Analyze OnTime datasets with Databend on AWS EC2 and S3

1.基准环境

ec2 size:c5a.4xlarge

ec2 region:<您的 s3 存储区域>

本地磁盘300G,本地磁盘仅用于ontime save和databend complie。

操作系统:ubuntu 20 x64

准备安装包:

$sudo apt-get install unzip make mysql-client-core-8.0

2.部署Databend

2.1 编译Databend

$git clone https://github.com/datafuselabs/databend.git

$cd databend

$make setup

$export PATH=$PATH:~/.cargo/bin

$make build-native

最后,databend 相关的二进制文件位于

./target/release/{databend-meta, databend-query}

2.2 启动Databend

# Please replace the s3 env config with your own. 
export STORAGE_TYPE=s3
export S3_STORAGE_BUCKET=
export S3_STORAGE_REGION=
export S3_STORAGE_ENDPOINT_URL=.s3.amazonaws.com
export S3_STORAGE_ACCESS_KEY_ID=
export S3_STORAGE_SECRET_ACCESS_KEY=

echo "Starting standalone DatabendQuery(release)"
./scripts/ci/deploy/databend-query-standalone.sh release

2.3 测试 Databend

mysql -h 127.0.0.1 -P3307 -uroot

检查连接是否正常。

3. 加载 Ontime

3.1 创建 Ontime 表

wget --no-check-certificate https://repo.databend.rs/ontime/create_table.sql
cat create_table.sql |mysql -h 127.0.0.1 -P3307 -uroot

3.2 加载数据

wget --no-check-certificate https://repo.databend.rs/t_ontime/t_ontime.csv.zip

unzip t_ontime.csv.zip

ls *.csv|xargs -I{} echo  curl -H \"insert_sql:insert into ontime format CSV\" -H \"csv_header:0\" -H \"field_delimitor:'\t'\"  -F  \"upload=@{}\"  -XPUT http://localhost:8001/v1/streaming_load |bash

4. 查询

执行查询

mysql -h 127.0.0.1 -P3307 -uroot 
mysql>set parallel_read_threads=4;
mysql>select count(*) from ontime;
mysql>select Year, count(*) from ontime group by Year;

基准查询要点

Number Query
Q1 SELECT DayOfWeek, count() AS c FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC;
Q2 SELECT DayOfWeek, count() *AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC;
Q3 SELECT Origin, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Origin ORDER BY c DESC LIMIT 10;
Q4 SELECT IATACODE_Reporting_Airline AS Carrier, count() FROM ontime WHERE DepDelay>10 AND Year = 2007 GROUP BY Carrier ORDER BY count() DESC;
Q5 SELECT IATA_CODE_Reporting_Airline AS Carrier, avg(cast(DepDelay>10 as Int8))*1000 AS c3 FROM ontime WHERE Year=2007 GROUP BY Carrier ORDER BY c3 DESC;
Q6 SELECT IATA_CODE_Reporting_Airline AS Carrier, avg(cast(DepDelay>10 as Int8))*1000 AS c3 FROM ontime WHERE Year>=2000 AND Year <=2008 GROUP BY Carrier ORDER BY c3 DESC;
Q7 SELECT IATA_CODE_Reporting_Airline AS Carrier, avg(DepDelay) * 1000 AS c3 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier;
Q8 SELECT Year, avg(DepDelay) FROM ontime GROUP BY Year;
Q9 SELECT Year, count(*) as c1 FROM ontime group by Year;
Q10 SELECT avg(cnt) FROM (SELECT Year,Month,count(*) AS cnt FROM ontime WHERE DepDel15=1 GROUP BY Year,Month) a;
Q11 SELECT avg(c1) FROM (select Year,Month,count(*) as c1 from ontime group by Year,Month) a;
Q12 SELECT OriginCityName, DestCityName, count(*) AS c FROM ontime GROUP BY OriginCityName, DestCityName ORDER BY c DESC LIMIT 10;
Q13 SELECT OriginCityName, count(*) AS c FROM ontime GROUP BY OriginCityName ORDER BY c DESC LIMIT 10;
Q14 SELECT count(*) FROM ontime;

如果想了解更多,可以关注公众号: Databend

你可能感兴趣的:(Analyze OnTime datasets with Databend on AWS EC2 and S3)