编译RetinaFace
另见 RetinaFace-Cpp、Retinaface-caffe
Anaconda下运行
pip install mxnet
或
pip install mxnet-cu101
conda install libpython m2w64-toolchain -c msys2
conda install cython
在Python安装路径下找到\Lib\distutils文件夹,创建distutils.cfg写入如下内容:
[build]
compiler=mingw32
[build_ext]
compiler=mingw32
然后进入RetinaFace的目录
修改test.py
gpuid = -1 ###禁止使用GPU
修改rcnn\cython\cpu_nms.pyx
cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]
###改成
cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1].astype(np.int32)
然后
cd rcnn
cd cython
python setup.py build_ext --inplace
cd ..
cd pycocotools
python setup.py build_ext --inplace
其它
pip install --upgrade jupyter_client
conda install spyder=4.0.1
###删除.spyder-py3
参考
RetinaFace在win10+CPU版mxnet+python36下配置运行
附
用RetinaFace检测新浪微博下载的图片并对齐
import cv2
import sys
import numpy as np
import datetime
import os
import glob
from retinaface import RetinaFace
import face_preprocess
from skimage import transform as trans
#from face_preprocess
def preprocess(img, bbox=None, landmark=None, **kwargs):
M = None
image_size = [112,112]
if landmark is not None:
assert len(image_size)==2
src = np.array([
[30.2946, 51.6963],
[65.5318, 51.5014],
[48.0252, 71.7366],
[33.5493, 92.3655],
[62.7299, 92.2041] ], dtype=np.float32 )
if image_size[1]==112:
src[:,0] += 8.0
dst = landmark.astype(np.float32)
tform = trans.SimilarityTransform()
tform.estimate(dst, src)
M = tform.params[0:2,:]
#M = cv2.estimateRigidTransform( dst.reshape(1,5,2), src.reshape(1,5,2), False)
if M is None:
if bbox is None: #use center crop
det = np.zeros(4, dtype=np.int32)
det[0] = int(img.shape[1]*0.0625)
det[1] = int(img.shape[0]*0.0625)
det[2] = img.shape[1] - det[0]
det[3] = img.shape[0] - det[1]
else:
det = bbox
margin = kwargs.get('margin', 44)
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0]-margin/2, 0)
bb[1] = np.maximum(det[1]-margin/2, 0)
bb[2] = np.minimum(det[2]+margin/2, img.shape[1])
bb[3] = np.minimum(det[3]+margin/2, img.shape[0])
ret = img[bb[1]:bb[3],bb[0]:bb[2],:]
if len(image_size)>0:
ret = cv2.resize(ret, (image_size[1], image_size[0]))
return ret
else: #do align using landmark
assert len(image_size)==2
#print(src.shape, dst.shape)
#print(src)
#print(dst)
#print(M)
warped = cv2.warpAffine(img,M,(image_size[1],image_size[0]), borderValue = 0.0)
#tform3 = trans.ProjectiveTransform()
#tform3.estimate(src, dst)
#warped = trans.warp(img, tform3, output_shape=_shape)
return warped
# 读取中文路径
def cv_imread(filePath):
cv_img=cv2.imdecode(np.fromfile(filePath,dtype=np.uint8),-1)
if cv_img is None:
return cv_img
if len(cv_img.shape) == 2:
cv_img=cv2.cvtColor(cv_img,cv2.COLOR_GRAY2BGR)
return cv_img
def detect(count, jpgfile, spath, detector, text_file):
print(jpgfile)
img = cv_imread(jpgfile)
if img is None:
return
index = jpgfile.rfind('.')
if index > 0:
suf = jpgfile[index:]
else:
suf='.jpg'
print(img.shape)
thresh = 0.8
scales = [1024, 1980]
im_shape = img.shape
target_size = scales[0]
max_size = scales[1]
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
#im_scale = 1.0
#if im_size_min>target_size or im_size_max>max_size:
im_scale = float(target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
print('im_scale', im_scale)
scales = [im_scale]
flip = False
faces, landmarks = detector.detect(img, thresh, scales=scales, do_flip=flip)
print(count, faces.shape, landmarks.shape)
#print(type(faces))
#print(type(landmarks))
if faces is not None:
print('find', faces.shape[0], 'faces')
for i in range(faces.shape[0]):
#print('score', faces[i][4])
box = faces[i].astype(np.int)
if (box[3]-box[1]) > 100 and (box[2]-box[0]) > 100:
#crop = img[box[1]:box[3], box[0]:box[2]]
crop = preprocess(img, bbox=box, landmark = landmarks[i])#, image_size='112,112'
target_file = os.path.join(spath, str(count)+'__'+str(i)+suf)
cv2.imwrite(target_file, crop)
oline = '%d\t%s\t%d\n' % (1,target_file, 1)#one class
text_file.write(oline)
img = None
gpuid = 0 ###-1禁止使用GPU
detector = RetinaFace('./model/R50', 0, gpuid, 'net3')
count=0
ppath="G:\\down\\yz"
spath="G:\\down\\detect_align"
dirlist=os.listdir(ppath)
for dirs in dirlist:
Olddir=os.path.join(ppath, dirs)
if os.path.isdir(Olddir):
output_filename = os.path.join(spath, 'lst')
npath = os.path.join(spath, dirs[0:4])
isExists = os.path.exists(npath)
if not isExists:
os.makedirs(npath)
filelist1=os.listdir(Olddir)
with open(output_filename, "a") as text_file:
for files1 in filelist1:
oldfile=os.path.join(Olddir, files1)
detect(count, oldfile, npath, detector, text_file)
count+=1