Kafka在MQ里面,基本上是属于无可替代的地位。所以,非常建议大家学习,并且使用它。
ChatGPT对于Apache Kafka的介绍:
Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发并于2011年开源。它主要用于解决大规模数据的实时流式处理和数据管道问题。
Kafka是一个分布式的发布-订阅消息系统,可以快速地处理高吞吐量的数据流,并将数据实时地分发到多个消费者中。Kafka消息系统由多个broker(服务器)组成,这些broker可以在多个数据中心之间分布式部署,以提供高可用性和容错性。
Kafka的基本架构由生产者、消费者和主题(topic)组成。生产者可以将数据发布到指定的主题,而消费者可以订阅这些主题并消费其中的数据。同时,Kafka还支持数据流的处理和转换,可以在管道中通过Kafka Streams API进行流式计算,例如过滤、转换、聚合等.。
Kafka使用高效的数据存储和管理技术,能够轻松地处理TB级别的数据量。其优点包括高吞吐量、低延迟、可扩展性、持久性和容错性等。
Kafka在企业级应用中被广泛应用,包括实时流处理、日志聚合、监控和数据分析等方面。同时,Kafka还可以与其他大数据工具集成,如Hadoop、Spark和Storm等,构建一个完整的数据处理生态系统。
MQ:MessageQueue,消息队列。 队列,是一种FIFO 先进先出的数据结构。消息则是跨进程传递的数据。一个典型的MQ系统,会将消息消息由生产者发送到MQ进行排队,然后根据一定的顺序交由消息的消费者进行处理。
例子:QQ和微信就是典型的MQ。只不过他对接的使用对象是人,而Kafka需要对接的使用对象是应用程序。
MQ的作用主要有以下三个方面:
作用:异步能提高系统的响应速度、吞吐量。
作用1:服务之间进行解耦,才可以减少服务之间的影响。提高系统整体的稳定性以及可扩展性
作用2:解耦后可以实现数据分发。生产者发送一个消息后,可以由一个或者多个消费者进行消费,并且消费者的增加或者减少对生产者没有影响
作用:以稳定的系统资源应对突发的流量冲击
一个典型的日志聚合的应用场景:服务需要收集来自各方的日志,并且分析
上图对应的业务场景决定了产品的特点:
第一步:首先需要准备机器
准备了三台虚拟机 192.168.232.128~130,预备搭建三台机器的集群。三台机器均预装CentOS7 操作系统。分别配置机器名 worker1,worker2,worker3。
vi /etc/hosts
192.168.232.128 worker1
192.168.232.129 worker2
192.168.232.130 worker3
然后需要关闭防火墙(实验环境建议关闭,因为你不清楚,启动Kafka会需要用到哪些端口)。
firewall-cmd --state 查看防火墙状态
systemctl stop firewalld.service 关闭防火墙
第二步:在机器上准备环境
1)三台机器上都需要安装JAVA,JAVA的安装过程就不多说了,实验中采用目前用得最多的JAVA 8 版本就可以了。
2)接着下载kafka,选择当前最新的3.2.0版本。下载地址:https://kafka.apache.org/downloads 选择kafka_2.13-3.4.0.tgz进行下载。
3)下载Zookeeper,下载地址 https://zookeeper.apache.org/releases.html ,Zookeeper的版本并没有强制要求,这里我们选择比较新的3.6.1版本
4)下载完成后,将这两个工具包上传到三台服务器上,解压后,分别放到/app/kafka和/app/zookeeper目录下。并将部署目录下的bin目录路径配置到path环境变量中
下载下来的Kafka安装包不需要做任何的配置,就可以直接单击运行。这通常是快速了解Kafka的第一步。启动Kafka之前需要先启动Zookeeper,这里就用Kafka自带的Zookeeper。
1)启动Zookeeper,脚本在bin目录下
cd $KAKFKA_HOME
nohup bin/zookeeper-server-start.sh config/zookeeper.properties &
启动之后,从nohup.out中可以看到zookeeper默认会在2181端口启动。通过jps指令看到一个QuorumPeerMain
进程,确定服务启动成功。
2)启动Kafka
nohup bin/kafka-server-start.sh config/server.properties &
启动完成后,使用jps指令,看到一个kafka进程,确定服务启动成功。服务会默认在9092端口启动。
3)简单收发消息
Kafka的基础工作机制是消息发送者可以将消息发送到kafka上指定的topic,而消息消费者,可以从指定的topic上消费消息
首先,可以使用Kafka提供的客户端脚本提前创建Topic:
如果不提前创建Topic,那么在第一次往一个之前不存在的Topic发送消息时,消息也能正常发送,只是会抛出LEADER_NOT_AVAILABLE警告。
`[oper@worker1 kafka_2.13-3.2.0]$ bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
123
12[2021-03-05 14:00:23,347] WARN [Producer clientId=console-producer] Error while fetching metadata with correlation id 1 : {test=LEADER_NOT_AVAILABLE} (org.apache.kafka.clients.NetworkClient)
3[2021-03-05 14:00:23,479] WARN [Producer clientId=console-producer] Error while fetching metadata with correlation id 3 : {test=LEADER_NOT_AVAILABLE} (org.apache.kafka.clients.NetworkClient)
[2021-03-05 14:00:23,589] WARN [Producer clientId=console-producer] Error while fetching metadata with correlation id 4 : {test=LEADER_NOT_AVAILABLE} (org.apache.kafka.clients.NetworkClient)
>>123
这是因为Broker端在创建完主题后,会显示通知Clients端LEADER_NOT_AVAILABLE异常。Clients端接收到异常后,就会主动去更新元数据,获取新创建的主题信息。
#创建Topic
bin/kafka-topics.sh --create --topic test --bootstrap-server localhost:9092
#查看Topic
bin/kafka-topics.sh --describe --topic test --bootstrap-server localhost:9092
然后,启动一个消息发送者端。往一个名为test的Topic发送消息。
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
当命令行出现 > 符号后,随意输入一些字符。Ctrl+C 退出命令行。这样就完成了往kafka发消息的操作。然后启动一个消息消费端,从名为test的Topic上接收消息。
[oper@worker1 kafka_2.13-3.2.0]$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test
qwe
qwe
123
123
123
^CProcessed a total of 5 messages
这样就完成了一个基础的交互。这其中,生产者和消费者并不需要同时启动。他们之间可以进行数据交互,但是又并不依赖于对方。没有生产者,消费者依然可以正常工作,反过来,没有消费者,生产者也依然可以正常工作。这也体现出了生产者和消费者之间的解耦。
4)其他消息模式
之前我们通过kafka提供的生产者和消费者脚本,启动了一个简单的消息生产者以及消息消费者,实际上,kafka还提供了丰富的消息消费方式。
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic test
如果需要更精确的消费消息,甚至可以指定从哪个partition,哪一条消息开始消费:
# 这表示从第0号Partition上的第四个消息开始读起。Partition和Offset是什么呢,可以用以下指令查看。
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --partition 0 --offset 4 --topic test
#两个消费者实例属于同一个消费者组
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --consumer-property group.id=testGrroup --topic test
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --consumer-property group.id=testGrroup --topic test
#这个消费者实例属于不同的消费者组
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --consumer-property group.id=testGrroup2 --topic test
我们在消费过程中,还可以查看消费者组的偏移量。使用kafka-consumer-groups.sh观测消费者组的情况。包括他们的消费进度。
bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --group testGroup
从这里可以看到,虽然业务上是通过Topic来分发消息的,但是实际上,消息是保存在Partition这样一个数据结构上的。
从之前的实验可以看到, Kafka的消息发送者和消息消费者通过Topic这样一个逻辑概念来进行业务沟通。但是实际上,所有的消息是存在服务端的Partition这样一个数据结构当中的。
在Kafka的技术体系中,有以下一些概念需要先熟悉起来:
为什么要用集群?虽然单机服务下,Kafka已经具备了非常高的性能。TPS能够达到百万级别。但是,在实际工作中使用时,单机搭建的Kafka会有很大的局限性。
一方面,消息太多,需要分开保存。Kafka是面向海量消息设计的,一个Topic下的消息会非常多,单机服务很难存得下来。这些消息就需要分成不同的Partition,分布到多个不同的Broker上。这样每个Broker就只需要保存一部分数据。这些分区的个数就称为分区数。
另一方面,服务不稳定,数据容易丢失。单机服务下,如果服务崩溃,数据就丢失了。为了保证数据安全,就需要给每个Partition配置一个或多个备份,保证数据不丢失。Kafka的集群模式下,每个Partition都有一个或多个备份。Kafka会通过一个统一的Zookeeper集群作为选举中心,给每个Partition选举出一个主节点Leader,其他节点就是从节点Follower。主节点负责响应客户端的具体业务请求,并保存消息。而从节点则负责同步主节点的数据。当主节点发生故障时,Kafka会选举出一个从节点成为新的主节点。
最后,Kafka集群中的这些Broker信息,包括Partition的选举信息,都会保存在额外部署的Zookeeper集群当中,这样,kafka集群就不会因为某一些Broker服务崩溃而中断。
Kafka的集群架构大体是这样的:
接下来我们就动手部署一个Kafka集群,来体验一下Kafka是如何面向海量数据进行横向扩展的。我们先来部署一个基于Zookeeper的Kafka集群。其中,选举中心部分,Zookeeper是一种多数同意的选举机制,允许集群中少数节点出现故障。因此,在搭建集群时,通常都是采用3,5,7这样的奇数节点,这样可以最大化集群的高可用特性。 在后续的实验过程中,我们会在三台服务器上都部署Zookeeper和Kafka。
1)部署Zookeeper集群
这里采用之前单独下载的Zookeeper来部署集群。Zookeeper是一种多数同意的选举机制,允许集群中少半数节点出现故障。因此,在搭建集群时,通常采用奇数节点,这样可以最大化集群的高可用特性。在后续的实现过程中,我们会在三台服务器上都部署Zookeeper。
先将下载下来的Zookeeper解压到/app/zookeeper目录。然后进入conf目录,修改配置文件。在conf目录中,提供了一个zoo_sample.cfg
文件,这是一个示例文件。我们只需要将这个文件复制一份zoo.cfg(cp zoo_sample.cfg zoo.cfg)
,修改下其中的关键配置就可以了。其中比较关键的修改参数如下:
#Zookeeper的本地数据目录,默认是/tmp/zookeeper。这是Linux的临时目录,随时会被删掉。
dataDir=/app/zookeeper/data
#Zookeeper的服务端口
clientPort=2181
#集群节点配置
server.1=192.168.232.128:2888:3888
server.2=192.168.232.129:2888:3888
server.3=192.168.232.130:2888:3888
其中,clientPort 2181是对客户端开放的服务端口。集群配置部分, server.x这个x就是节点在集群中的myid。后面的2888端口是集群内部数据传输使用的端口。3888是集群内部进行选举使用的端口。
接下来将整个Zookeeper的应用目录分发到另外两台机器上。就可以在三台机器上都启动Zookeeper服务了。
bin/zkServer.sh --config conf start
启动完成后,使用jps指令可以看到一个QuorumPeerMain进程就表示服务启动成功。三台机器都启动完成后,可以查看下集群状态。
[root@hadoop02 zookeeper-3.5.8]# bin/zkServer.sh status
ZooKeeper JMX enabled by default
Using config: /app/zookeeper/zookeeper-3.5.8/bin/../conf/zoo.cfg
Client port found: 2181. Client address: localhost.
Mode: leader
2)部署Kafka集群
kafka服务并不需要进行选举,因此也没有奇数台服务的建议。部署Kafka的方式跟部署Zookeeper差不多,就是解压、配置、启服务三板斧。
首先将Kafka解压到/app/kafka目录下,然后进入config目录,修改server.properties
。这个配置文件里面的配置项非常多,下面列出几个要重点关注的配置。
#broker 的全局唯一编号,不能重复,只能是数字。
broker.id=0
#数据文件地址。同样默认是给的/tmp目录。
log.dirs=/app/kafka/logs
#默认的每个Topic的分区数
num.partitions=1
#zookeeper的服务地址
zookeeper.connect=worker1:2181,worker2:2181,worker3:2181
#可以选择指定zookeeper上的基础节点。
#zookeeper.connect=worker1:2181,worker2:2181,worker3:2181/kafka
broker.id需要每个服务器上不一样,分发到其他服务器上时,要注意修改一下,多个Kafka服务注册到同一个zookeeper集群上的节点,会自动组成集群。配置文件中的注释非常细致,可以关注一下。下面是server.properties文件中比较重要的核心配置
接下来就可以启动kafka服务了。启动服务时需要指定配置文件。
# -daemon表示后台启动kafka服务,这样就不会占用当前命令窗口。
bin/kafka-server-start.sh -daemon config/server.properties
通过jps指令可以查看Kafka的进程
接下来可以对比一下之前的单机服务,快速理解Kafka的集群当中核心的Topic、Partition、Broker。
# 创建一个分布式的Topic
[oper@worker1 bin]$ ./kafka-topics.sh --bootstrap-server worker1:9092 --create --replication-factor 2 --partitions 4 --topic disTopic
Created topic disTopic.
# 列出所有的Topic
[oper@worker1 bin]$ ./kafka-topics.sh --bootstrap-server worker1:9092 --list
__consumer_offsets
disTopic
# 查看列表情况
[oper@worker1 bin]$ ./kafka-topics.sh --bootstrap-server worker1:9092 --describe --topic disTopic
Topic: disTopic TopicId: vX4ohhIER6aDpDZgTy10tQ PartitionCount: 4 ReplicationFactor: 2 Configs: segment.bytes=1073741824
Topic: disTopic Partition: 0 Leader: 2 Replicas: 2,1 Isr: 2,1
Topic: disTopic Partition: 1 Leader: 1 Replicas: 1,0 Isr: 1,0
Topic: disTopic Partition: 2 Leader: 0 Replicas: 0,2 Isr: 0,2
Topic: disTopic Partition: 3 Leader: 2 Replicas: 2,0 Isr: 2,0
从这里可以看到,
接下来,我们还可以查看Topic下的Partition分布情况。在Broker上,与消息,联系最为紧密的,其实就是Partition了。之前在配置Kafka集群时,指定了一个log.dirs属性,指向了一个服务器上的日志目录。进入这个目录,就能看到每个Broker的实际数据承载情况。
从这里可以看到,Broker上的一个Partition对应了日志目录中的一个目录。而这个Partition上的所有消息,就保存在这个对应的目录当中。
从整个过程可以看到,Kafka当中,Topic是一个数据集合的逻辑单元。同一个Topic下的数据,实际上是存储在Partition分区中的,Partition就是数据存储的物理单元。而Broker是Partition的物理载体,这些Partition分区会尽量均匀的分配到不同的Broker机器上。而之前接触到的offset,就是每个消息在partition上的偏移量
Q1:Kafka为何要这样来设计Topic、Partition和Broker的关系呢?
答:
- Kafka设计需要支持海量的数据,而这样庞大的数据量,一个Broker是存不下的。那就拆分成多个Partition,每个Broker只存一部分数据。这样极大的扩展了集群的吞吐量。
- 每个Partition保留了一部分的消息副本,如果放到一个Broker上,就容易出现单点故障。所以就给每个Partition设计Follower节点,进行数据备份,从而保证数据安全。另外,多备份的Partition设计也提高了读取消息时的并发度。
- 在同一个Topic的多个Partition中,会产生一个Partition作为Leader。这个Leader Partition会负责响应客户端的请求,并将数据往其他Partition分发