[LeetCode]146. LRU 缓存机制

146. LRU 缓存机制

难度:中等

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。

实现 LRUCache 类:

  • LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1
  • void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4

提示:

  • 1 <= capacity <= 3000
  • 0 <= key <= 10000
  • 0 <= value <= 105
  • 最多调用 2 * 105getput

解法一:Hash

class LRUCache:

    def __init__(self, capacity: int):
        self.capacity = capacity
        self.Dict = dict()

    def get(self, key: int) -> int:
        if key in self.Dict:
            self.Dict[key] = self.Dict.pop(key)
            return self.Dict[key]
        return -1

    def put(self, key: int, value: int) -> None:
        if key in self.Dict:
            self.Dict.pop(key)
            self.Dict[key] = value
        else:
            if len(self.Dict) == self.capacity:
                self.Dict.pop(list(self.Dict)[0])
            self.Dict[key] = value

# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

解法二:双链表

class DLinkNode:
    def __init__(self,key = 0, value = 0):
        self.key = key
        self.value = value
        self.prev = None
        self.next = None

class LRUCache:

    def __init__(self, capacity: int):
        self.capacity = capacity
        self.cache = dict()
        self.head = DLinkNode()
        self.tail = DLinkNode()
        self.head.next = self.tail
        self.tail.prev = self.head
        self.size = 0


    def get(self, key: int) -> int:
        if key not in self.cache:
            return -1
        else:
            node = self.cache[key]
            self.moveToHead(node)
            return node.value


    def put(self, key: int, value: int) -> None:
        if key not in self.cache:
            node = DLinkNode(key, value)
            self.cache[key] = node
            self.addToHead(node)
            self.size += 1
            if self.size > self.capacity:
                removed = self.removeTail()
                self.cache.pop(removed.key)
                self.size -= 1
        else:
            node = self.cache[key]
            node.value = value
            self.moveToHead(node)


    def addToHead(self, node):
        node.next = self.head.next
        node.prev = self.head
        self.head.next.prev = node
        self.head.next = node

    
    def moveToHead(self, node):
        node.next.prev = node.prev
        node.prev.next = node.next
        self.addToHead(node)

    def removeTail(self):
        p = self.tail.prev
        self.tail.prev.prev.next = self.tail
        self.tail.prev = self.tail.prev.prev
        return p


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

你可能感兴趣的:(LeetCode,leetcode,缓存,python)