SQL优化技巧

文章目录

  • 前言
  • 一、避免使用select *
  • 二、用union all代替union
  • 三、小表驱动大表
  • 四、批量操作
  • 五、多用limit
  • 六、in中值太多
  • 七、增量查询
  • 八、高效的分页
  • 九、用连接查询代替子查询
  • 十、join的表不宜过多
  • 十一、join时要注意
  • 十二、控制索引的数量
  • 十三、选择合理的字段类型
  • 十四、提升group by的效率
  • 十五、索引优化


前言

        SQL优化是工厂中常见的内容,我曾经也经历过连续半个月只做SQL优化的工作,以下是关于SQL优化的一些小技巧,希望对大家有所帮助


提示:以下是本篇文章正文内容,下面案例可供参考
SQL优化技巧_第1张图片

一、避免使用select *

        很多时候,我们写SQL语句时,为了方便,喜欢直接使用select *,一次性查出表中所有列的数据。
反例

select * from user where id=1;

        在实际业务场景中,可能我们真正需要使用的只有其中一两列。查了很多数据,但是不用,白白浪费了数据库资源,比如:内存或者cpu。此外,多查出来的数据,通过网络IO传输的过程中,也会增加数据传输的时间。还有一个最重要的问题是:select *不会走覆盖索引,会出现大量的回表操作,而从导致查询SQL的性能很低。
正例

select name,age from user where id=1;

        SQL语句查询时,只查需要用到的列,多余的列根本无需查出来。

        如果真的有必要查出所有字段,经过我验证,以下方式也有走索引的可能

select * from user where id in (select id from user where id=1);

二、用union all代替union

        我们都知道SQL语句使用union关键字后,可以获取排重后的数据。而如果使用union all关键字,可以获取所有数据,包含重复的数据。
反例

(select * from user where id=1) 
union 
(select * from user where id=2);

        排重的过程需要遍历、排序和比较,它更耗时,更消耗cpu资源。所以如果能用union all的时候,尽量不用union。
正例

(select * from user where id=1) 
union all
(select * from user where id=2);

        除非是有些特殊的场景,比如union all之后,结果集中出现了重复数据,而业务场景中是不允许产生重复数据的,这时可以使用union。

三、小表驱动大表

        小表驱动大表,也就是说用小表的数据集驱动大表的数据集。假如有order和user两张表,其中order表有10000条数据,而user表有100条数据。这时如果想查一下,所有有效的用户下过的订单列表。
可以使用in关键字实现:

select * from order
where user_id in (select id from user where status=1)

也可以使用exists关键字实现:

select * from order
where exists (select 1 from user where order.user_id = user.id and status=1)

        前面提到的这种业务场景,使用in关键字去实现业务需求,更加合适。
        因为如果SQL语句中包含了in关键字,则它会优先执行in里面的子查询语句,然后再执行in外面的语句。如果in里面的数据量很少,作为条件查询速度更快。而如果SQL语句中包含了exists关键字,它优先执行exists左边的语句(即主查询语句)。然后把它作为条件,去跟右边的语句匹配。如果匹配上,则可以查询出数据。如果匹配不上,数据就被过滤掉了。这个需求中,order表有10000条数据,而user表有100条数据。order表是大表,user表是小表。如果order表在左边,则用in关键字性能更好。
总结一下:

  1. in 适用于左边大表,右边小表。
  2. exists 适用于左边小表,右边大表。

        不管是用in,还是exists关键字,其核心思想都是用小表驱动大表。

四、批量操作

        如果你有一批数据经过业务处理之后,需要插入数据,该怎么办?
反例

for(Order order: list){
   orderMapper.insert(order):
}

        在循环中逐条插入数据。

insert into order(id,code,user_id) 
values(123,'001',100);

        该操作需要多次请求数据库,才能完成这批数据的插入。但众所周知,我们在代码中,每次远程请求数据库,是会消耗一定性能的。而如果我们的代码需要请求多次数据库,才能完成本次业务功能,势必会消耗更多的性能。
正例

orderMapper.insertBatch(list):

        提供一个批量插入数据的方法。

insert into order(id,code,user_id) 
values(123,'001',100),(124,'002',100),(125,'003',101);

        这样只需要远程请求一次数据库,SQL性能会得到提升,数据量越多,提升越大。但需要注意的是,不建议一次批量操作太多的数据,如果数据太多数据库响应也会很慢。批量操作需要把握一个度,建议每批数据尽量控制在500以内。如果数据多于500,则分多批次处理。

五、多用limit

        有时候,我们需要查询某些数据中的第一条,比如:查询某个用户下的第一个订单,想看看他第一次的首单时间。
反例

select id, create_date 
 from order 
	where user_id=123 
	order by create_date asc;

        根据用户id查询订单,按下单时间排序,先查出该用户所有的订单数据,得到一个订单集合。然后在代码中,获取第一个元素的数据,即首单的数据,就能获取首单时间。

List<Order> list = orderMapper.getOrderList();
Order order = list.get(0);

        虽说这种做法在功能上没有问题,但它的效率非常不高,需要先查询出所有的数据,有点浪费资源。
正例


select id, create_date 
 from order 
where user_id=123 
order by create_date asc 
limit 1;

        使用limit 1,只返回该用户下单时间最小的那一条数据即可。

此外,在删除或者修改数据时,为了防止误操作,导致删除或修改了不相干的数据,也可以在SQL语句最后加上limit。

例如:

update order set status=0,edit_time=now(3) 
where id>=100 and id<200 limit 100;

        这样即使误操作,比如把id搞错了,也不会对太多的数据造成影响。

六、in中值太多

        对于批量查询接口,我们通常会使用in关键字过滤出数据。比如:想通过指定的一些id,批量查询出用户信息。
反例

select id,name from category
where id in (1,2,3...100000000);

        如果我们不做任何限制,该查询语句一次性可能会查询出非常多的数据,很容易导致接口超时。
        我们避免上述情况,更应该在业务代码中做限制。
正例

public List<Category> getCategory(List<Long> ids) {
   if(CollectionUtils.isEmpty(ids)) {
      return null;
   }
   if(ids.size() > 500) {
      throw new BusinessException("一次最多允许查询500条记录")
   }
   return mapper.getCategoryList(ids);
}

        还有一个方案就是:如果ids超过500条记录,可以分批用多线程去查询数据。每批只查500条记录,最后把查询到的数据汇总到一起返回。

        如果真的有必要查出所有字段,经过我验证,以下方式也有走索引的可能
        不过这只是一个临时方案,不适合于ids实在太多的场景。因为ids太多,即使能快速查出数据,但如果返回的数据量太大了,网络传输也是非常消耗性能的,接口性能始终好不到哪里去。

七、增量查询

        有时候,我们需要通过远程接口查询数据,然后同步到另外一个数据库。
反例

select * from user;

        如果直接获取所有的数据,然后同步过去。这样虽说非常方便,但是带来了一个非常大的问题,就是如果数据很多的话,查询性能会非常差。
正例

select * from user 
where id>#{lastId} and create_time >= #{lastCreateTime} 
limit 100;

        按id和时间升序,每次只同步一批数据,这一批数据只有100条记录。每次同步完成之后,保存这100条数据中最大的id和时间,给同步下一批数据的时候用。

        通过这种增量查询的方式,能够提升单次查询的效率。

八、高效的分页

        有时候,列表页在查询数据时,为了避免一次性返回过多的数据影响接口性能,我们一般会对查询接口做分页处理。
在MySQL中分页一般用的limit关键字:

select id,name,age 
from user limit 10,20;

        如果表中数据量少,用limit关键字做分页,没啥问题。但如果表中数据量很多,用它就会出现性能问题。
比如现在分页参数变成了:

select id,name,age 
from user limit 1000000,20;

        MySQL会查到1000020条数据,然后丢弃前面的1000000条,只查后面的20条数据,这个是非常浪费资源的。

九、用连接查询代替子查询

        MySQL中如果需要从两张以上的表中查询出数据的话,一般有两种实现方式:子查询 和 连接查询。
子查询的例子如下:

select * from order
where user_id in (select id from user where status=1)

        子查询语句可以通过in关键字实现,一个查询语句的条件落在另一个select语句的查询结果中。程序先运行在嵌套在最内层的语句,再运行外层的语句。子查询语句的优点是简单,结构化,如果涉及的表数量不多的话。但缺点是MySQL执行子查询时,需要创建临时表,查询完毕后,需要再删除这些临时表,有一些额外的性能消耗。
这时可以改成连接查询。具体例子如下:

select o.* from order o
inner join user u on o.user_id = u.id
where u.status=1

十、join的表不宜过多

        根据阿里巴巴开发者手册的规定,join表的数量不应该超过3个。
反例

select a.name,b.name.c.name,d.name
from a 
inner join b on a.id = b.a_id
inner join c on c.b_id = b.id
inner join d on d.c_id = c.id
inner join e on e.d_id = d.id
inner join f on f.e_id = e.id
inner join g on g.f_id = f.id

        如果join太多,MySQL在选择索引的时候会非常复杂,很容易选错索引。并且如果没有命中,nested loop join 就是分别从两个表读一行数据进行两两对比,复杂度是 n^2。所以我们应该尽量控制join表的数量。
正例

select a.name,b.name.c.name,a.d_name 
from a 
inner join b on a.id = b.a_id
inner join c on c.b_id = b.id

        如果实现业务场景中需要查询出另外几张表中的数据,可以在a、b、c表中冗余专门的字段,比如:在表a中冗余d_name字段,保存需要查询出的数据。join表的数量要根据系统的实际情况决定,不能一概而论,尽量越少越好。

十一、join时要注意

        我们在涉及到多张表联合查询的时候,一般会使用join关键字。而join使用最多的是left join和inner join。

  1. left join/right join:求两个表的交集外加左表/右表剩下的数据。
  2. inner join:求两个表交集的数据。

使用inner join的示例如下:

select o.id,o.code,u.name 
from order o 
inner join user u on o.user_id = u.id
where u.status=1;

        如果两张表使用inner join关联,MySQL会自动选择两张表中的小表,去驱动大表,所以性能上不会有太大的问题。
使用left join的示例如下:

select o.id,o.code,u.name 
from order o 
left join user u on o.user_id = u.id
where u.status=1;

        如果两张表使用left join关联,MySQL会默认用left join关键字左边的表,去驱动它右边的表。如果左边的表数据很多时,就会出现性能问题。

要特别注意的是在用left join关联查询时,左边要用小表,右边可以用大表。如果能用inner join的地方,尽量少用left join。

十二、控制索引的数量

        众所周知,索引能够显著的提升查询SQL的性能,但索引数量并非越多越好。因为表中新增数据时,需要同时为它创建索引,而索引是需要额外的存储空间的,而且还会有一定的性能消耗。阿里巴巴的开发者手册中规定,单表的索引数量应该尽量控制在5个以内,并且单个索引中的字段数不超过5个。MySQL使用的B+树的结构来保存索引的,在insert、update和delete操作时,需要更新B+树索引。如果索引过多,会消耗很多额外的性能。

十三、选择合理的字段类型

        char表示固定字符串类型,该类型的字段存储空间的固定的,会浪费存储空间。

alter table order 
add column code char(20) NOT NULL;

        varchar表示变长字符串类型,该类型的字段存储空间会根据实际数据的长度调整,不会浪费存储空间。

alter table order 
add column code varchar(20) NOT NULL;

        如果是长度固定的字段,比如用户手机号,一般都是11位的,可以定义成char类型,长度是11字节。但如果是企业名称字段,假如定义成char类型,就有问题了。如果长度定义得太长,比如定义成了200字节,而实际企业长度只有50字节,则会浪费150字节的存储空间。如果长度定义得太短,比如定义成了50字节,但实际企业名称有100字节,就会存储不下,而抛出异常。所以建议将企业名称改成varchar类型,变长字段存储空间小,可以节省存储空间,而且对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

        我们在选择字段类型时,应该遵循这样的原则:

  1. 能用数字类型,就不用字符串,因为字符的处理往往比数字要慢。
  2. 尽可能使用小的类型,比如:用bit存布尔值,用tinyint存枚举值等。
  3. 长度固定的字符串字段,用char类型。
  4. 长度可变的字符串字段,用varchar类型。
  5. 金额字段用decimal,避免精度丢失问题。

十四、提升group by的效率

        我们有很多业务场景需要使用group by关键字,它主要的功能是去重和分组。通常它会跟having一起配合使用,表示分组后再根据一定的条件过滤数据。
反例

select user_id,user_name from order
group by user_id
having user_id <= 200;

        这种写法性能不好,它先把所有的订单根据用户id分组之后,再去过滤用户id大于等于200的用户。
正例

select user_id,user_name from order
where user_id <= 200
group by user_id

        使用where条件在分组前,就把多余的数据过滤掉了,这样分组时效率就会更高一些。

其实这是一种思路,不仅限于group by的优化。我们的SQL语句在做一些耗时的操作之前,应尽可能缩小数据范围,这样能提升SQL整体的性能。

十五、索引优化

        SQL优化当中,有一个非常重要的内容就是:索引优化。很多时候SQL语句,走了索引,和没有走索引,执行效率差别很大。所以索引优化被作为SQL优化的首选。索引优化的第一步是:检查SQL语句有没有走索引。可以使用explain命令,查看MySQL的执行计划。
例如:

explain select * from `order` where code='002';

结果:
在这里插入图片描述
        通过这几列可以判断索引使用情况,执行计划包含列的含义如下图所示:
SQL优化技巧_第2张图片

        SQL语句没有走索引,排除没有建索引之外,最大的可能性是索引失效了。
SQL优化技巧_第3张图片
        如果不是上面的这些原因,则需要再进一步排查一下其他原因。此外,你有没有遇到过这样一种情况:明明是同一条SQL,只有入参不同而已。有的时候走的索引a,有的时候却走的索引b? 必要时可以使用force index来强制查询SQL走某个索引。

你可能感兴趣的:(数据库,sql,数据库,database,SQL优化)