掌握时间复杂度

常数时间的操作:一个操作如果和数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作。
时间复杂度为一个算法流程中,常数操作数量的指标。常用O(读作big O)来表示。具体来说,在常数操作数量的表达式中,只要高阶项,不要低阶项,也不要高阶项的系数,剩下的部分如果记为f(N),那么时间复杂度为O(f(N))。评价一个算法流程的好坏,先看时间复杂度的指标,然后再分析不同数据样本下的实际运行时间,也就是常数项时间。

例子一

一个简单的理解时间复杂度的例子
一个有序数组A,另一个无序数组B,请打印B中的所有不在A中的数,A数
组长度为N,B数组长度为M。
算法流程1:对于数组B中的每一个数,都在A中通过遍历的方式找一下;
算法流程2:对于数组B中的每一个数,都在A中通过二分的方式找一下;
算法流程3:先把数组B排序,然后用类似外排的方式打印所有不在A中出现
的数;
三个流程,三种时间复杂度的表达...
如何分析好坏?

算法1

O(M*N)

算法2

O(M*logN)

算法3

O(M*logM)+(M+N)

例子二

对数器的概念和使用

0,有一个你想要测的方法a,
1,实现一个绝对正确但是复杂度不好的方法b,
2,实现一个随机样本产生器
3,实现比对的方法
4,把方法a和方法b比对很多次来验证方法a是否正确。
5,如果有一个样本使得比对出错,打印样本分析是哪个方法出错
6,当样本数量很多时比对测试依然正确,可以确定方法a已经正确。

public class Code_BubbleSort {

    public static void bubbleSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        for (int e = arr.length - 1; e > 0; e--) {
            for (int i = 0; i < e; i++) {
                if (arr[i] > arr[i + 1]) {
                    swap(arr, i, i + 1);
                }
            }
        }
    }

    public static void swap(int[] arr, int i, int j) {
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }

    // for test
    public static void comparator(int[] arr) {
        Arrays.sort(arr);
    }

    // for test
    public static int[] generateRandomArray(int maxSize, int maxValue) {
        int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
        }
        return arr;
    }

    // for test
    public static int[] copyArray(int[] arr) {
        if (arr == null) {
            return null;
        }
        int[] res = new int[arr.length];
        for (int i = 0; i < arr.length; i++) {
            res[i] = arr[i];
        }
        return res;
    }

    // for test
    public static boolean isEqual(int[] arr1, int[] arr2) {
        if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
            return false;
        }
        if (arr1 == null && arr2 == null) {
            return true;
        }
        if (arr1.length != arr2.length) {
            return false;
        }
        for (int i = 0; i < arr1.length; i++) {
            if (arr1[i] != arr2[i]) {
                return false;
            }
        }
        return true;
    }

    // for test
    public static void printArray(int[] arr) {
        if (arr == null) {
            return;
        }
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

    // for test
    public static void main(String[] args) {
        int testTime = 500000;
        int maxSize = 100;
        int maxValue = 100;
        boolean succeed = true;
        for (int i = 0; i < testTime; i++) {
            int[] arr1 = generateRandomArray(maxSize, maxValue);
            int[] arr2 = copyArray(arr1);
            bubbleSort(arr1);
            comparator(arr2);
            if (!isEqual(arr1, arr2)) {
                succeed = false;
                break;
            }
        }
        System.out.println(succeed ? "Nice!" : "Fucking fucked!");

        int[] arr = generateRandomArray(maxSize, maxValue);
        printArray(arr);
        bubbleSort(arr);
        printArray(arr);
    }

}

例子三

冒泡排序细节的讲解与复杂度分析
时间复杂度O(N^2),额外空间复杂度O(1)
代码如上面的代码段
bubbleSort
可以得出复杂度为n+n-1+n-2+...+1=n(n+1)/2=>O(N^2)

例子四

选择排序的细节讲解与复杂度分析
时间复杂度O(N^2),额外空间复杂度O(1)

public class Code_SelectionSort {

    public static void selectionSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        for (int i = 0; i < arr.length - 1; i++) {
            int minIndex = i;
            for (int j = i + 1; j < arr.length; j++) {
                minIndex = arr[j] < arr[minIndex] ? j : minIndex;
            }
            swap(arr, i, minIndex);
        }
    }

    public static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }

    // for test
    public static void comparator(int[] arr) {
        Arrays.sort(arr);
    }

    // for test
    public static int[] generateRandomArray(int maxSize, int maxValue) {
        int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
        }
        return arr;
    }

    // for test
    public static int[] copyArray(int[] arr) {
        if (arr == null) {
            return null;
        }
        int[] res = new int[arr.length];
        for (int i = 0; i < arr.length; i++) {
            res[i] = arr[i];
        }
        return res;
    }

    // for test
    public static boolean isEqual(int[] arr1, int[] arr2) {
        if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
            return false;
        }
        if (arr1 == null && arr2 == null) {
            return true;
        }
        if (arr1.length != arr2.length) {
            return false;
        }
        for (int i = 0; i < arr1.length; i++) {
            if (arr1[i] != arr2[i]) {
                return false;
            }
        }
        return true;
    }

    // for test
    public static void printArray(int[] arr) {
        if (arr == null) {
            return;
        }
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

    // for test
    public static void main(String[] args) {
        int testTime = 500000;
        int maxSize = 100;
        int maxValue = 100;
        boolean succeed = true;
        for (int i = 0; i < testTime; i++) {
            int[] arr1 = generateRandomArray(maxSize, maxValue);
            int[] arr2 = copyArray(arr1);
            selectionSort(arr1);
            comparator(arr2);
            if (!isEqual(arr1, arr2)) {
                succeed = false;
                printArray(arr1);
                printArray(arr2);
                break;
            }
        }
        System.out.println(succeed ? "Nice!" : "Fucking fucked!");

        int[] arr = generateRandomArray(maxSize, maxValue);
        printArray(arr);
        selectionSort(arr);
        printArray(arr);
    }

}

例子五

插入排序的细节讲解与复杂度分析
时间复杂度O(N^2),额外空间复杂度O(1)

public class Code_01_InsertionSort {

    public static void insertionSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        for (int i = 1; i < arr.length; i++) {
            for (int j = i - 1; j >= 0 && arr[j] > arr[j + 1]; j--) {
                swap(arr, j, j + 1);
            }
        }
    }

    public static void swap(int[] arr, int i, int j) {
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }

    // for test
    public static void comparator(int[] arr) {
        Arrays.sort(arr);
    }

    // for test
    public static int[] generateRandomArray(int maxSize, int maxValue) {
        int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
        }
        return arr;
    }

    // for test
    public static int[] copyArray(int[] arr) {
        if (arr == null) {
            return null;
        }
        int[] res = new int[arr.length];
        for (int i = 0; i < arr.length; i++) {
            res[i] = arr[i];
        }
        return res;
    }

    // for test
    public static boolean isEqual(int[] arr1, int[] arr2) {
        if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
            return false;
        }
        if (arr1 == null && arr2 == null) {
            return true;
        }
        if (arr1.length != arr2.length) {
            return false;
        }
        for (int i = 0; i < arr1.length; i++) {
            if (arr1[i] != arr2[i]) {
                return false;
            }
        }
        return true;
    }

    // for test
    public static void printArray(int[] arr) {
        if (arr == null) {
            return;
        }
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

    // for test
    public static void main(String[] args) {
        int testTime = 500000;
        int maxSize = 100;
        int maxValue = 100;
        boolean succeed = true;
        for (int i = 0; i < testTime; i++) {
            int[] arr1 = generateRandomArray(maxSize, maxValue);
            int[] arr2 = copyArray(arr1);
            insertionSort(arr1);
            comparator(arr2);
            if (!isEqual(arr1, arr2)) {
                succeed = false;
                break;
            }
        }
        System.out.println(succeed ? "Nice!" : "Fucking fucked!");

        int[] arr = generateRandomArray(maxSize, maxValue);
        printArray(arr);
        insertionSort(arr);
        printArray(arr);
    }

}

例子六

剖析递归行为和递归行为时间复杂度的估算
一个递归行为的例子
master公式的使用
T(N) = a*T(N/b) + O(N^d)

  1. log(b,a) > d -> 复杂度为O(N^log(b,a))
  2. log(b,a) = d -> 复杂度为O(N^d * logN)
  3. log(b,a) < d -> 复杂度为O(N^d)
public static void quickSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        quickSort(arr, 0, arr.length - 1);
    }

    public static void quickSort(int[] arr, int l, int r) {
        if (l < r) {
            swap(arr, l + (int) (Math.random() * (r - l + 1)), r);
            int[] p = partition(arr, l, r);
            quickSort(arr, l, p[0] - 1);
            quickSort(arr, p[1] + 1, r);
        }
    }

例子七

归并排序的细节讲解与复杂度分析
时间复杂度O(N*logN),额外空间复杂度O(N)

public static void mergeSort(int[] arr) {
        if (arr == null || arr.length < 2) {
            return;
        }
        mergeSort(arr, 0, arr.length - 1);
    }

    public static void mergeSort(int[] arr, int l, int r) {
        if (l == r) {
            return;
        }
        int mid = l + ((r - l) >> 1);
        mergeSort(arr, l, mid);
        mergeSort(arr, mid + 1, r);
        merge(arr, l, mid, r);
    }

    public static void merge(int[] arr, int l, int m, int r) {
        int[] help = new int[r - l + 1];
        int i = 0;
        int p1 = l;
        int p2 = m + 1;
        while (p1 <= m && p2 <= r) {
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= m) {
            help[i++] = arr[p1++];
        }
        while (p2 <= r) {
            help[i++] = arr[p2++];
        }
        for (i = 0; i < help.length; i++) {
            arr[l + i] = help[i];
        }
    }

例子八

小和问题和逆序对问题

小和问题

在一个数组中,每一个数左边比当前数小的数累加起来,叫做这个数组的小和。求一个数组的小和。

逆序对问题

在一个数组中,左边的数如果比右边的数大,则折两个数构成一个逆序对,请打印所有逆序对。
两个其实是一样的,小和问题是求一个数左边比它小的数,逆序对是求一个数左边比它大的数,下面以小和问题为例子来求时间复杂度
例子:
[1,3,4,2,5]
1左边比1小的数,没有;
3左边比3小的数,1;
4左边比4小的数,1、3;
2左边比2小的数,1;
5左边比5小的数,1、3、4、2;
所以小和为1+1+3+1+1+3+4+2=16

public static int smallSum(int[] arr) {
        if (arr == null || arr.length < 2) {
            return 0;
        }
        return mergeSort(arr, 0, arr.length - 1);
    }

    public static int mergeSort(int[] arr, int l, int r) {
        if (l == r) {
            return 0;
        }
        int mid = l + ((r - l) >> 1);
        return mergeSort(arr, l, mid) + mergeSort(arr, mid + 1, r) + merge(arr, l, mid, r);
    }

    public static int merge(int[] arr, int l, int m, int r) {
        int[] help = new int[r - l + 1];
        int i = 0;
        int p1 = l;
        int p2 = m + 1;
        int res = 0;
        while (p1 <= m && p2 <= r) {
            res += arr[p1] < arr[p2] ? (r - p2 + 1) * arr[p1] : 0;
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= m) {
            help[i++] = arr[p1++];
        }
        while (p2 <= r) {
            help[i++] = arr[p2++];
        }
        for (i = 0; i < help.length; i++) {
            arr[l + i] = help[i];
        }
        return res;
    }

你可能感兴趣的:(掌握时间复杂度)