- AIGC时代的Vue或React前端开发
GISer_Jinger
JavascriptReactVueAIGCvue.jsreact.js
在AIGC(人工智能生成内容)时代,Vue开发正经历着深刻的变革。以下是对AIGC时代Vue开发的详细分析:一、AIGC技术对Vue开发的影响代码生成与自动化AIGC技术使得开发者能够借助智能工具快速生成和优化Vue代码。例如,通过自然语言处理模型(如ChatGPT),开发者可以描述组件的功能和样式需求,然后自动生成包含模板、脚本和样式的完整组件代码。这不仅大大提高了开发效率,还减少了人为错误的可
- 大模型蒸馏与大模型微调技术有啥差别?
kcarly
大模型知识乱炖杂谈大模型蒸馏大模型微调大模型AI
大模型蒸馏与大模型微调是当前人工智能领域中两种重要的技术手段,它们在模型优化、性能提升和资源利用方面各有特点。以下将从定义、技术原理、应用场景及优缺点等方面对这两种技术进行深入对比。一、定义与基本概念大模型蒸馏(KnowledgeDistillation)蒸馏是一种将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)的技术。通过训练学生模型模仿教师模型的行为,实现模型压缩和性能保留的目标。蒸
- DeepSeek大模型技术深度解析:揭开Transformer架构的神秘面纱
不一样的信息安全
网络杂烩AIDeepSeek
摘要DeepSeek大模型由北京深度求索人工智能基础技术研究有限公司开发,基于Transformer架构,具备卓越的自然语言理解和生成能力。该模型能够高效处理智能对话、文本生成和语义理解等复杂任务,标志着人工智能在自然语言处理领域的重大进展。关键词DeepSeek模型,Transformer架构,自然语言,智能对话,文本生成,语义理解一、DeepSeek大模型的架构解析1.1DeepSeek大模型
- 《DeepSeek-R1 问世,智能搜索领域迎来新变革》
黑金IT
智能搜索
DeepSeek-R1是由DeepSeek公司开发的一款创新型人工智能模型,自2024年5月7日发布以来,迅速在AI领域引起广泛关注。该模型凭借其卓越的语言理解能力、高效的数据处理能力、自适应学习能力、高安全性与可靠性以及广泛的应用场景与拓展性,在众多人工智能模型中脱颖而出。DeepSeek-R1的核心特点强大的语言理解能力:DeepSeek-R1采用先进的深度学习算法,能够精准解析复杂的语义结构
- AI绘画关键词(咒语)分析与热点研究
集eee
AI作画midjourneychatgpt人工智能prompttext2imgstablediffusion
语义文本图像生成技术关键词分析与热点研究一、研究背景与研究意义随着深度学习的发展,语义文本到图像的生成技术已经取得长足进步,AI绘画也因此快速崛起。只需输入关键词,AI系统就能自动生成符合语义描述的图像,这一技术的出现,使绘画的创作方式发生革命性变化。目前主流的AI绘画模型有Midjourney、Stablediffusion和文心一格等,其使用方式多为输入一段含有图片描述的“prompt(指令)
- 基于深度学习的大规模模型训练
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的大规模模型训练涉及训练具有数百万甚至数十亿参数的深度神经网络,以处理复杂的任务,如自然语言处理、计算机视觉和语音识别。以下是关于基于深度学习的大规模模型训练的详细介绍:1.背景和动机数据和模型规模增长:随着数据量和模型复杂度的增加,传统的单机或小规模集群训练难以满足需求。计算资源需求:大规模模型训练需要大量计算资源和存储,单一设备无法满足。任务复杂性:处理复杂任务(如GPT-3、BE
- 【Python TensorFlow】入门到精通
极客代码
玩转Pythonpythontensorflow开发语言人工智能深度学习
TensorFlow是一个开源的机器学习框架,由Google开发,广泛应用于机器学习和深度学习领域。本篇将详细介绍TensorFlow的基础知识,并通过一系列示例来帮助读者从入门到精通TensorFlow的使用。1.TensorFlow简介1.1什么是TensorFlow?TensorFlow是一个开源的软件库,主要用于数值计算,特别是在机器学习和深度学习领域。它提供了一个灵活的架构来定义复杂的数
- 【学习心得】Python好库推荐——PEFT
小oo呆
【学习心得】人工智能python语言模型
一、PEFT是什么?PEFT(Parameter-EfficientFine-Tuning)是一种在深度学习中进行参数高效微调的技术。这种技术主要应用于大型预训练模型的微调过程中,目的是在保持模型性能的同时减少所需的计算资源和时间。通过PEFT,可以有效地调整模型以适应特定任务或数据集,而无需对整个模型的所有参数进行全面微调。二、PEFT使用场景在计算资源有限的情况下,如边缘设备、移动设备或低成本
- 深度学习训练模型损失Loss为NaN或者无穷大(INF)原因及解决办法
余弦的倒数
学习笔记机器学习深度学习pytorch深度学习人工智能机器学习
文章目录一、可能原因==1.学习率过高====2.batchsize过大==3.梯度爆炸4.损失函数不稳定5.数据预处理问题6.数据标签与输入不匹配7.模型初始化问题8.优化器设置问题9.数值问题==10.模型结构设计缺陷==二、调试步骤三、常见预防措施一、可能原因1.学习率过高原因:学习率过高可能导致梯度爆炸,权重更新幅度过大,导致模型参数变为无穷大或NaN。学习率设置过大是常见问题,它会让参数
- 构建高效LLM应用开发架构的关键策略
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题:构建高效LLM应用开发架构的关键策略在当今快速发展的技术世界中,人工智能(AI)已经成为推动创新的核心动力。其中,大型语言模型(LLM)的应用开发尤为引人注目。LLM通过处理和理解自然语言,为各种场景提供了强大的智能解决方案,从智能客服到内容生成,再到教育应用,都有着广泛的应用前景。然而,高效地构建LLM应用开发架构面临着诸多挑战,包括性能、可扩展性和安全性等。本文将深入探讨构建高效LL
- 通过命令行工作流提升工作效率的实战教程(持续更新)
herosunly
大模型工作流实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了通过命令行工作流提升工作效率的实战教程,希望对使用大语言模型的同学们有所
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- AI大模型在智能客服系统中的应用
季风泯灭的季节
AI大模型应用技术二人工智能
目录引言1.基于大模型的智能客服系统架构2.对话生成与上下文管理对话生成上下文管理3.提高客服系统响应精度的策略1.使用专门训练的数据集2.引入实体识别和意图分类3.反馈循环和持续优化4.AI大模型在企业中的优化与调优策略1.模型微调(Fine-tuning)2.模型蒸馏(ModelDistillation)3.响应延迟优化4.持续监控与反馈结论引言随着人工智能(AI)技术的不断发展,AI大模型在
- 深度学习(DL/ML)学习路径
jackl的科研日常
深度学习学习人工智能
最近几年,尤其是自从2016年AlphaGo打败李世石事件后,人工智能技术受到了各行业极大关注。其中以机器学习技术中深度学习最受瞩目。主要原因是这些技术在科研领域和工业界的应用效果非常好,大幅提升了算法效率、降低了成本。因而市场对相关技术有了如此大的需求。我在思考传统行业与这些新兴技术结合并转型的过程中,亦系统的回顾了深度学习及其相关技术。本文正是我在学习过程中所作的总结。我将按照我所理解的学习路
- 基于深度学习的行人检测与识别系统:YOLOv5、YOLOv8、YOLOv10与UI界面的实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
引言行人检测与识别技术作为计算机视觉领域的一个重要应用,广泛应用于智能监控、自动驾驶、公共安全等多个领域。行人检测系统的目标是通过图像或视频中的内容,自动识别并定位行人,这项任务在复杂环境中面临着不同的挑战,如多样的行人姿态、遮挡、光照变化等。近年来,深度学习的进步,尤其是目标检测领域的快速发展,为行人检测提供了强有力的支持。YOLO(YouOnlyLookOnce)系列模型,作为目前目标检测领域
- 基于深度学习的行人检测识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
1.引言行人检测与识别是计算机视觉中的一个重要领域,广泛应用于安防监控、智能交通、自动驾驶等多个领域。传统的行人检测方法面临着许多挑战,如低光照、复杂背景、遮挡等问题。随着深度学习技术的迅猛发展,基于卷积神经网络(CNN)的方法,尤其是YOLO(YouOnlyLookOnce)系列算法,在行人检测中取得了显著的效果。YOLOv8作为YOLO系列的最新版本,继承了YOLO一贯的高效性和准确性,在速度
- (3-5)文生图模型架构:扩散模型
码农三叔
训练RAG多模态)人工智能python深度学习大模型文生图多模态
3.5扩散模型扩散模型(DiffusionModels)是一类用于生成图像的深度学习模型,近年来在图像生成任务中取得了显著的进展。扩散模型的基本思想是通过逐步添加噪声到数据中,然后学习从噪声中恢复原始数据的过程。3.5.1扩散模型的基本概念扩散模型是一种基于随机过程的生成模型,通过逐步添加和去除噪声,实现从随机噪声到高质量数据的转化,其独特的训练和生成机制使其在图像生成领域表现出色。1.扩散过程扩
- Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
是Dream呀
Pythonpython神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 毕业设计项目 深度学习人体目标检测
bee_dc
毕业设计毕设大数据
1简介今天学长向大家介绍一个机器视觉的毕设项目,基于深度学习的人体目标检测算法研究与实现项目运行效果:毕业设计深度学习行人目标检测系统项目分享:见文末!2目标检测概念普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图中所示是一只猫。在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和
- 【人工智能】基于Python的机器翻译系统,从RNN到Transformer的演进与实现
蒙娜丽宁
Python杂谈人工智能人工智能python机器翻译
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界机器翻译(MachineTranslation,MT)作为自然语言处理领域的重要应用之一,近年来受到了广泛的关注。在本篇文章中,我们将详细探讨如何使用Python实现从传统的循环神经网络(RNN)到现代Transformer模型的机器翻译系统。文章将从机
- 备战美赛!2025美赛数学建模C题模拟预测!用于大家练手模拟!
灿灿数模
数学建模
完整的思路代码模型见文末2025美赛数学建模C题模拟题:城市交通拥堵指数的预测与管理策略背景随着全球城市化进程的加快,交通拥堵问题成为城市发展的重要挑战之一。交通拥堵不仅影响居民出行效率,还增加了能源消耗和碳排放。近年来,各大城市开始尝试通过实时数据监控和人工智能技术对交通拥堵进行预测和管理。然而,由于城市交通系统的复杂性,现有方法在实际应用中仍面临诸多挑战。任务作为一名数据分析专家,你的任务是基
- AI计算的未来:中心化与去中心化的博弈
智识微光Intelligence
人工智能去中心化区块链
引言人工智能(AI)技术的迅猛发展正在全球计算格局中。最新发布的DeepSeekr1模型,以远低于传统大模型的成本实现了相当水平的推理能力,甚至能够在工作站上本地运行。一次突破AI计算正在经历从中心化(云计算)到去中心化(本地推理)的重大转变。这种变化不仅影响AI产业的商业模式,还可能构建全球计算基础设施、经济利益格局,并加速人工超级智能(ASI)的到来。因此,本文将探讨人工智能训练成本的降低、推
- 探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度
窦育培
探索未来AI:飞桨大模型套件PaddleFleetX引领技术新高度PaddleFleetX飞桨大模型开发套件,提供大语言模型、跨模态大模型、生物计算大模型等领域的全流程开发工具链。项目地址:https://gitcode.com/gh_mirrors/pa/PaddleFleetX在人工智能的快速发展中,大模型已经成为推动技术创新的重要力量。如今,我们有幸向您推荐一个全新的开源项目——Paddle
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
HyperAI超神经
TVM人工智能机器学习TVM编程编译器GPUCPU
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 深度学习篇---数据存储类型
Ronin-Lotus
深度学习篇深度学习人工智能学习笔记CPython数据类型
文章目录前言第一部分:C语言中的数据存储类型1.char(通常是8位)优点缺点2.short(通常是16位)优点缺点3.int(通常是32位)优点缺点4.long(通常是32位或64位)优点缺点5.longlong(通常是64位)优点缺点6.float(通常是32位)优点缺点7.double(通常是64位)优点缺点第二部分:Python中的数据存储类型1.int(整数类型)优点缺点2.float(
- Cursor 的 AI 模型:代码生成与理解的原理
drebander
AI编程Cursor
引言在当今的软件开发领域,人工智能(AI)正在迅速改变开发者的工作方式。Cursor作为一款智能编程助手,通过集成先进的AI模型,为开发者提供了强大的代码生成、补全和优化功能。Cursor的核心竞争力在于其AI模型的能力,这些模型不仅能够理解代码的上下文,还能生成高质量的代码建议。本文将深入探讨Cursor使用的AI模型(如GPT系列或其他定制模型),并解析这些模型如何理解代码上下文并生成高质量的
- AI对接之对话API对接指南
我码玄黄
AI探索AI工具教你一招人工智能AIAI对接前端
AI对接之对话API对接指南本系列AI的API对接均以DeepSeek为例,其他大模型的对接方式类似。在人工智能领域,对话系统是连接人与机器的重要桥梁。DeepSeekAPI提供了一个强大的对话补全功能,使得开发者能够轻松地将智能对话集成到自己的应用中。本文将详细介绍如何对接DeepSeek的对话补全API,并展示几种典型的使用形式。1.API概览DeepSeek的对话补全API通过一个POST请
- AI人工智能代理工作流 AI Agent WorkFlow:在物流与供应链中的应用
AI架构设计之禅
大数据AI人工智能AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:在物流与供应链中的应用1.背景介绍1.1物流与供应链行业面临的挑战物流与供应链行业是现代经济的重要组成部分,涉及原材料采购、产品生产、仓储配送、销售等多个环节。随着全球化进程加快,供应链日益复杂,企业面临着成本控制、效率提升、风险管理等诸多挑战。传统的物流与供应链管理模式已难以适应市场变化,亟需引入新技术和创新方法。1.2人工智能在物流供应链中
- 深度学习篇---深度学习框架
Ronin-Lotus
深度学习篇深度学习人工智能pythonPytorchTensorFlowpaddlepaddle
文章目录前言第一部分:框架简介1.PyTorch简介特点动态计算图易于上手强大的社区支持与Python的集成度高核心组件2.TensorFlow简介特点静态计算图跨平台强大的生态系统Keras集成核心组件3.PaddlePaddle简介特点易于使用高性能工业级应用丰富的预训练模型核心组件第二部分:基本操作PyTorch基本操作TensorFlow基本操作PaddlePaddle基本操作总结前言以上
- 强化学习在自动驾驶中的实现与挑战
Echo_Wish
人工智能前沿技术自动驾驶人工智能机器学习
强化学习在自动驾驶中的实现与挑战自动驾驶技术作为当今人工智能领域的前沿之一,正通过各种方式改变我们的出行方式。而强化学习(ReinforcementLearning,RL),作为机器学习的一大分支,在自动驾驶的实现中扮演了至关重要的角色。它通过模仿人类驾驶员的决策过程,为车辆提供动态、灵活的导航与控制能力。然而,强化学习在实际应用中并非一帆风顺,还面临着诸多技术和现实挑战。本文将从原理、实现与挑战
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在