二叉树的存储

目录

1.使用孩子表示法创建二叉树

2.二叉树的遍历

2.1前中后序遍历

2.2 前中后序遍历的选择题

2.3实现前中后序遍历

2.3.1前序遍历

2.3.2中序遍历

2.3.3后序遍历

3.二叉树的基本操作

3.1获取叶子节点的个数

3.2获取树中节点的个数

3.3获取第K层节点的个数

3.4获取二叉树的高度

3.5检测值为value的元素是否存在


1.使用孩子表示法创建二叉树

二叉树的存储结构 分为: 顺序存储 类似于链表的链式存储

这篇文章主讲的是链式存储。

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式。

二叉表示:

// 孩子表示法
class Node {
int val ; // 数据域
Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}

三叉表示:

// 孩子双亲表示法
class Node {
int val ; // 数据域
Node left ; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right ; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent ; // 当前节点的根节点
}

这篇文章使用的存储储存方式是孩子表示法

在学习二叉树的基本操作前,需先要手动快速创建一棵简单的二叉树,使用孩子表示法。创建如下(图1)二叉树。

二叉树的存储_第1张图片

public class Tree {
    class TreeNode{
        char val;
        TreeNode left;
        TreeNode right;
        public TreeNode(char val){
            this.val=val;
        }
    }

    public TreeNode create(){
        TreeNode A=new TreeNode('A');
        TreeNode B=new TreeNode('B');
        TreeNode C=new TreeNode('C');
        TreeNode D=new TreeNode('D');
        TreeNode E=new TreeNode('E');
        TreeNode F=new TreeNode('F');
        TreeNode G=new TreeNode('G');
        TreeNode H=new TreeNode('H');
        A.left=B;
        A.right=C;
        B.left=D;
        B.right=E;
        C.left=F;
        C.right=G;
        E.right=H;
        return A;
    }
}


2.二叉树的遍历

依次对树中每个结 点均做一次且仅做一次访问

2.1前中后序遍历

为什么要有前中后序遍历顺序?

  在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱, 如果按 照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的
如果 N代表根节点 L代表根节点的 左子树 R代表根节点的右子树 ,则根据遍历根节点的先后次序有以下遍历方式
NLR :前序遍历 (Preorder Traversal 亦称先序遍历 )—— 访问根结点 ---> 根的左子树 ---> 根的右子树。
LNR :中序遍历 (Inorder Traversal)—— 根的左子树 ---> 根节点 ---> 根的右子树。
LRN :后序遍历 (Postorder Traversal)—— 根的左子树 ---> 根的右子树 ---> 根节点。

 以图一为例:

二叉树的存储_第2张图片

前序遍历结果:A B D E H C F G
中序遍历结果:D B E H A F C G
后序遍历结果:D H E B F G C A

2.2 前中后序遍历的选择题

(1)某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为()

A: ABDHECFG
B: ABCDEFGH
C: HDBEAFCG
D: HDEBFGCA
二叉树如图:
二叉树的存储_第3张图片

故选A

(2) 二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为()

A: E              B: F               C: G            D: H
二叉树如图:
二叉树的存储_第4张图片
故选A
(3) 设一课二叉树的中序遍历序列: badce ,后序遍历序列: bdeca ,则二叉树前序遍历序列为 ()
A: adbce             B: decab              C: debac             D: abcde
二叉树如图:
二叉树的存储_第5张图片
故选D
(4)某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出 ( 同一层从左到右 ) 的序列为 ()
A: FEDCBA
B: CBAFED
C: DEFCBA
D: ABCDEF
二叉树如图:
二叉树的存储_第6张图片
故选A
思考题:
二叉树的存储_第7张图片

2.3实现前中后序遍历

2.3.1前序遍历
    // 前序遍历
    void preOrder(TreeNode root){
        if(root==null){
            return;
        }
        System.out.println(root.val+" ");
        preOrder(root.left);
        preOrder(root.right);
    }
2.3.2中序遍历
// 中序遍历
    void inOrder(TreeNode root){
        if(root==null){
            return;
        }
        inOrder(root.left);
        System.out.println(root.val+" ");
        inOrder(root.right);
    }
2.3.3后序遍历
// 后序遍历
    void postOrder(TreeNode root){
        if(root==null){
            return;
        }
        postOrder(root.left);
        postOrder(root.right);
        System.out.println(root.val+" ");
    }

3.二叉树的基本操作

// 获取树中节点的个数
int size ( Node root );
// 获取叶子节点的个数
int getLeafNodeCount ( Node root );
// 获取第 K 层节点的个数
int getKLevelNodeCount ( Node root , int k );
// 获取二叉树的高度
int getHeight ( Node root );
// 检测值为 value 的元素是否存在
Node fifind ( Node root , int val ); 

3.1获取叶子节点的个数

当前节点的左右子树若都为空,说明该节点为叶子结点,返回1

树的叶子节点的个数=左树叶子节点的个数+右树叶子节点的个数

    int getLeafNodeCount(TreeNode root){
        if(root==null){
            return 0;
        }
        return getLeafNodeCount(root.left)+getLeafNodeCount(root.right);
    }

3.2获取树中节点的个数

若当前结点为空,返回0

先获取左节点个数,再获取右节点个数,然后返回两者相加再加上根节点的个数1

  int size(TreeNode root){
        if(root==null){
            return 0;
        }
        return size(root.right)+size(root.left)+1;
    }

3.3获取第K层节点的个数

本质是计算k=1时的节点数

树的叶子第K层节点的个数=左树叶子第K-1层节点的个数+右树第K-1层节点的个数

    int getKLevelNodeCount(TreeNode root, int k) {
        if(root==null){
            return 0;
        }
        if(k==1){
            return 1;
        }
        return getKLevelNodeCount(root.left,k-1)
                +getKLevelNodeCount(root.right,k-1);
    }

3.4获取二叉树的高度

    int getHeight(TreeNode root) {
        if(root==null){
            return 0;
        }
        int lefthight=getHeight(root.left);
        int rifhthight=getHeight(root.right);
        return lefthight>rifhthight?(lefthight+1):(rifhthight+1);
    }

3.5检测值为value的元素是否存在

遍历左(右)子树,若没有找到,则返回null,若找到,则返回该结点

   TreeNode fifind(TreeNode root, int val) {
        if (root==null){
            return null;
        }
        if(root.val==val){
            return root;
        }
        TreeNode lefttree=fifind(root.left, val);
        if(lefttree!=null){
            return lefttree;
        }
        TreeNode righttree=fifind(root.right, val);
        if(righttree!=null){
            return righttree;
        }
        return null;
    }

以上为我个人的小分享,如有问题,欢迎讨论!!! 

都看到这了,不如关注一下,给个免费的赞 

 

你可能感兴趣的:(数据结构,java,经验分享,其他)