CLAHE是一个比较有意思的图像增强的方法,主要用在医学图像上面。之前的比赛中,用到了这个,但是对其算法原理不甚了解。在这里做一个复盘。
CLAHE起到的作用简单来说就是增强图像的对比度的同时可以抑制噪声
CLAHE的英文是Contrast Limited Adaptive Histogram Equalization 限制对比度的自适应直方图均衡。在学习这个之前,我们要先学习一下下面的前置算法:
在比赛中,我们往往使用albumentations库函数进行图像的预处理,因为这个预处理库的运行速度非常的快,而且封装了大量的图像增强的方法。图像任务的话这个库函数非常滴奈斯。
本文中会介绍一下albumentations库函数实现CLAHE的代码,然后再用openCV实现。
import albumentations
RESIZE_SIZE = 1024 # or 768
train_transform = albumentations.Compose([
albumentations.Resize(RESIZE_SIZE, RESIZE_SIZE),
albumentations.OneOf([
albumentations.RandomGamma(gamma_limit=(60, 120), p=0.9),
albumentations.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.9),
albumentations.CLAHE(clip_limit=4.0, tile_grid_size=(4, 4), p=0.9),
]),
albumentations.HorizontalFlip(p=0.5),
albumentations.ShiftScaleRotate(shift_limit=0.2, scale_limit=0.2, rotate_limit=20,
interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_CONSTANT, p=1),
albumentations.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0, p=1.0)
])
这是一个图像增强的pipline,其中的流程是:
本文主要讲解的就是CLAHE这个直方图均衡化的算法。
使用openCV的代码来获取一个图片的灰度直方图:
import cv2
import numpy as np
import matplotlib.pyplot as plt
def plot(grayHist):
plt.plot(range(256), grayHist, 'r', linewidth=1.5, c='red')
y_maxValue = np.max(grayHist)
plt.axis([0, 255, 0, y_maxValue]) # x和y的范围
plt.xlabel("gray Level")
plt.ylabel("Number Of Pixels")
plt.show()
if __name__ == "__main__":
# 读取图像并转换为灰度图
img = cv2.imread(r'E:\dog.jpg', 0)
# 图像的灰度级范围是0~255
grayHist = cv2.calcHist([img], [0], None, [256], [0, 256])
# 绘制直方图
plot(grayHist)
狗子的图片就是左边的这个,发现灰度值在100左右的像素个数最多:
在生活中,我们在PS图片的时候,往往会用到图片对比度,那么这个究竟是什么东西呢?
图片对比度指的是一幅图片中最亮的白和最暗的黑之间的反差大小。常用的定量度量方法是Michelson对比度:
C = I m a x − I m i n I m a x + I m i n C = \frac{I_{max}-I_{min}}{I_{max}+I_{min}} C=Imax+IminImax−Imin
【英文中如何描述高对比度与低对比度的?】
当一幅图像最白和最黑像素灰度都在128附近浮动时,图像的直方图集中在中间的几个桶,图像看起来灰蒙蒙的,英语中使用dull描述这种效果。相反,如果图像中黑白像素的跨度较大,则图像富有通透感,英语中使用clarity描述这种效果。
图片中左边的图片就是dull,灰度直方图也是集中在中间区域,这就是低对比度;最右边的图片是clarity,直方图感觉是被拉开了、舒展了,这就是高对比度。
我们已经搞懂了图片不通透的原因,就是灰度直方图不够舒展,集中在了一个小区域,这样我们可以通过数学的方法把低对比度的图像提高对比度。最简单的方法就是对比度拉伸(Contrast Stretching)。
现在有这样的一个低对比度的图片,其灰度直方图集中在中间的区域。然后我们想把这个灰度直方图拉伸到整个0~255的区间,我们怎么做呢?(这里假设这个低对比度的图片的灰度集中在100到200之间好了)
用一个这样的分段线性函数,来处理上面那个低对比度图片的时候,可以把(r2,s2)极端的设置成(100,0),把(r3,s3)设置成(200,255),这样把原来的直方图通过这个函数映射,其实就是把100~200范围线性拉伸到0~255这么大。
这种方法最简单,简单的说就是线性拉伸直方图。对于某些图片可以起到效果:
对比度解决不了的问题,我们来用HE试试。Histogram Equalization的思想就是用数学方法重新调整像素的亮度分布,来保证直方图具有最大的动态范围,也就是尽可能地让灰度直方图是一个矩形!
其实Contrast Stretching也是做的一样的事情,只是它用的简单的分段线性函数来重新映射灰度,现在用更巧妙地方法。
【定义一些数学符号】
因为**不管怎么转换,概率密度函数的累积总是1,而转换前后的取值范围都是[0,1],**所以可以得到:
∫ 0 1 p ( x ) d x = ∫ 0 1 C d y = 1 \int_0^1{p(x)dx=\int_0^1Cdy=1} ∫01p(x)dx=∫01Cdy=1
(当然,这里可以很快的算出来,C=1)
**我们希望找到,一个x和y的映射关系,也就是 y = f ( x ) y=f(x) y=f(x),**不难想到,这个 f ( x ) f(x) f(x)就应该是 p ( x ) p(x) p(x)的累积分布函数,也就是:
f ( x ) = ∫ 0 x p ( u ) d u f(x)=\int_0^xp(u)du f(x)=∫0xp(u)du
这个图中,直观的展示了,任何一个直方图,只要按照该直方图的累积分布函数进行拉伸,就可以得到一个矩形的直方图。
下面是一个利用这样的方法增强对比度的例子:
可以发现,在直方图密集的地方,就会被拉的松散
再看另外一个例子:
可以发现,使用HE之后的直方图的累积分布函数,是一个直线
HE算法在一种情况下,效果不好,**如果一个图片中有大块的暗区或者亮区的话,效果非常不好。**这个的原因,也非常好理解,因为HE其实要求一个图片中必须有10%的最亮的像素点,必须有10%第二亮的像素点,必须有10%第三亮的像素点……假设有一张纯黑的图片,你想想经过HE处理之后,会出现什么情况?答案就是一部分黑的像素也会被强行搞成白的
【Histogram Equalization的缺点】
针对第一个问题,提出了CLHE,加入对比度限制,其实原理很简单置直方图分布的阈值,将超过该阈值的分布“均匀”分散至概率密度分布上,由此来限制转换函数(累计直方图)的增幅。
这样的话,直方图就不会出现概率密度函数过大的区域,从而避免了某些集中区域被拉得过于系数。
Adaptive HE的基本思想是将原始图片划分成子区域,然后对每个子区域进行HE变换。当然,这样做的问题应该是显而易见的:
每一块区域之间都会有非常大的不连续。因此为了解决这个问题,提出了优化方案双线性插值的AHE,然后这个基础上再使用CLHE的截断对比度的思想,就变成了我们现在的CLAHE算法。
【使用双线性插值的方案】
将图像分为多个矩形块大小,对于每个矩形块子图,分别计算其灰度直方图和对应的变换函数(累积直方图)
将原始图像中的像素按照分布分为三种情况处理:
【这里是openCV实现HE的方法】
img = cv.imread(r'E:\dog.jpg', 0)
equ = cv.equalizeHist(img) # 输入为灰度图
res = np.hstack((img, equ)) # stacking images side-by-side
cv.imwrite('res.png',res)
img = cv2.imread(r'E:\dog.jpg', 0)
# create a CLAHE object
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
cl1 = clahe.apply(img)
res = np.hstack((img, cl1))
cv2.imwrite('res.jpg', res)
【更多对比的例子】
参考文章: