Redis核心数据结构实战与高性能原理剖析

文章目录

    • Redis安装
    • Redis的单线程和高性能
    • 五种数据结构
      • String结构
      • Hash结构
      • List结构
      • Set结构
      • ZSet结构
    • 其他高级命令

Redis安装

下载地址:http://redis.io/download
安装步骤:
# 安装gcc
yum install gcc

# 把下载好的redis-5.0.3.tar.gz放在/usr/local文件夹下,并解压
wget http://download.redis.io/releases/redis-5.0.3.tar.gz
tar -zxvf redis-5.0.3.tar.gz
cd redis-5.0.3

# 进入到解压好的redis-5.0.3目录下,进行编译与安装
make

# 修改配置
daemonize yes  #后台启动
protected-mode no  #关闭保护模式,开启的话,只有本机才可以访问redis
# 需要注释掉bind
#bind 127.0.0.1(bind绑定的是自己机器网卡的ip,如果有多块网卡可以配多个ip,代表允许客户端通过机器的哪些网卡ip去访问,内网一般可以不配置bind,注释掉即可)

# 启动服务
src/redis-server redis.conf

# 验证启动是否成功 
ps -ef | grep redis 

# 进入redis客户端 
src/redis-cli 

# 退出客户端
quit

# 退出redis服务: 
(1)pkill redis-server 
(2)kill 进程号                       
(3)src/redis-cli shutdown 

Redis的单线程和高性能

Redis是单线程吗?
Redis 的单线程主要是指 Redis 的网络 IO 和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。

Redis 单线程为什么还能这么快?
因为它所有的数据都在内存中,所有的运算都是内存级别的运算,而且单线程避免了多线程的切换性能损耗问题。正因为 Redis 是单线程,所以要小心使用 Redis 指令,对于那些耗时的指令(比如keys),一定要谨慎使用,一不小心就可能会导致 Redis 卡顿。

Redis 单线程如何处理那么多的并发客户端连接?
Redis的IO多路复用:redis利用epoll来实现IO多路复用,将连接信息和事件放到队列中,依次放到文件事件分派器,事件分派器将事件分发给事件处理器。

Redis核心数据结构实战与高性能原理剖析_第1张图片

# 查看redis支持的最大连接数,在redis.conf文件中可修改,# maxclients 10000
127.0.0.1:6379> CONFIG GET maxclients
    ##1) "maxclients"
    ##2) "10000"

五种数据结构

String结构

字符串常用操作
SET  key  value 			//存入字符串键值对
MSET  key  value [key value ...] 	//批量存储字符串键值对
SETNX  key  value 		//存入一个不存在的字符串键值对
GET  key 			//获取一个字符串键值
MGET  key  [key ...]	 	//批量获取字符串键值
DEL  key  [key ...] 		//删除一个键
EXPIRE  key  seconds 		//设置一个键的过期时间(秒)
原子加减
INCR  key 			//将key中储存的数字值加1
DECR  key 			//将key中储存的数字值减1
INCRBY  key  increment 		//将key所储存的值加上increment
DECRBY  key  decrement 	//将key所储存的值减去decrement

String应用场景

单值缓存
SET  key  value 	
GET  key 	

对象缓存
1) SET  user:1  value(json格式数据)     //对象字段很多的话,如果只有几个字段更新频繁,可以采用下面的方式
2) MSET  user:1:name  zhuge   user:1:balance  1888
   MGET  user:1:name   user:1:balance 
分布式锁
SETNX  product:10001  true 		//返回1代表获取锁成功
SETNX  product:10001  true 		//返回0代表获取锁失败
。。。执行业务操作
DEL  product:10001			//执行完业务释放锁

SET product:10001 true  ex  10  nx	//防止程序意外终止导致死锁

计数器
INCR article:readcount:{文章id}  	
GET article:readcount:{文章id} 

Web集群session共享
spring session + redis实现session共享

分布式系统全局序列号	
INCRBY  orderId  1000		//redis批量生成序列号提升性能

Hash结构

Hash常用操作
HSET  key  field  value 			//存储一个哈希表key的键值
HSETNX  key  field  value 		//存储一个不存在的哈希表key的键值
HMSET  key  field  value [field value ...] 	//在一个哈希表key中存储多个键值对
HGET  key  field 				//获取哈希表key对应的field键值
HMGET  key  field  [field ...] 		//批量获取哈希表key中多个field键值
HDEL  key  field  [field ...] 		//删除哈希表key中的field键值
HLEN  key				//返回哈希表key中field的数量
HGETALL  key				//返回哈希表key中所有的键值

HINCRBY  key  field  increment 		//为哈希表key中field键的值加上增量increment

Hash应用场景

对象缓存
HMSET  user  {userId}:name  zhuge  {userId}:balance  1888
HMSET  user  1:name  zhuge  1:balance  1888
HMGET  user  1:name  1:balance  

电商购物车
1)以用户id为key
2)商品id为field
3)商品数量为value

购物车操作
添加商品 hset cart:1001 10088 1
增加数量 hincrby cart:1001 10088 1
商品总数 hlen cart:1001
删除商品 hdel cart:1001 10088
获取购物车所有商品 hgetall cart:1001

优点
同类数据归类整合储存,方便数据管理
相比string操作消耗内存与cpu更小
相比string储存更节省空间

缺点
过期功能不能使用在field上,只能用在key上
Redis集群架构下不适合大规模使用

List结构

LPUSH  key  value [value ...] 		//将一个或多个值value插入到key列表的表头(最左边)
RPUSH  key  value [value ...]	 	//将一个或多个值value插入到key列表的表尾(最右边)
LPOP  key			//移除并返回key列表的头元素
RPOP  key			//移除并返回key列表的尾元素
LRANGE  key  start  stop		//返回列表key中指定区间内的元素,区间以偏移量start和stop指定

BLPOP  key  [key ...]  timeout	//从key列表表头弹出一个元素,若列表中没有元素,阻塞等待		
		                     //	timeout秒,如果timeout=0,一直阻塞等待
BRPOP  key  [key ...]  timeout 	//从key列表表尾弹出一个元素,若列表中没有元素,阻塞等待				
                            //	timeout秒,如果timeout=0,一直阻塞等待

List应用场景

常用数据结构
Stack() = LPUSH + LPOP
Queue(队列)= LPUSH + RPOP
Blocking MQ(阻塞队列)= LPUSH + BRPOP

微博消息和微信公号消息
诸葛老师关注了MacTalk,备胎说车等大V
1MacTalk发微博,消息ID10018
LPUSH  msg:{诸葛老师-ID}  10018
2)备胎说车发微博,消息ID10086
LPUSH  msg:{诸葛老师-ID} 10086
3)查看最新微博消息
LRANGE  msg:{诸葛老师-ID}  0  4


Set结构

Set常用操作
SADD  key  member  [member ...]			//往集合key中存入元素,元素存在则忽略,
							            //若key不存在则新建
SREM  key  member  [member ...]			//从集合key中删除元素
SMEMBERS  key					//获取集合key中所有元素
SCARD  key					//获取集合key的元素个数
SISMEMBER  key  member			//判断member元素是否存在于集合key中
SRANDMEMBER  key  [count]			//从集合key中选出count个元素,元素不从key中删除
SPOP  key  [count]				//从集合key中选出count个元素,元素从key中删除

Set运算操作
SINTER  key  [key ...] 				//交集运算
SINTERSTORE  destination  key  [key ..]		//将交集结果存入新集合destination中
SUNION  key  [key ..] 				//并集运算
SUNIONSTORE  destination  key  [key ...]		//将并集结果存入新集合destination中
SDIFF  key  [key ...] 				//差集运算
SDIFFSTORE  destination  key  [key ...]		//将差集结果存入新集合destination中

Set应用场景
微信抽奖小程序
1)点击参与抽奖加入集合
SADD key {userlD}
2)查看参与抽奖所有用户
SMEMBERS key	  
3)抽取count名中奖者
SRANDMEMBER key [count] / SPOP key [count]

微信微博点赞,收藏,标签
1) 点赞
SADD  like:{消息ID}  {用户ID}
2) 取消点赞
SREM like:{消息ID}  {用户ID}
3) 检查用户是否点过赞
SISMEMBER  like:{消息ID}  {用户ID}
4) 获取点赞的用户列表
SMEMBERS like:{消息ID}
5) 获取点赞用户数 
SCARD like:{消息ID}

集合操作实现微博微信关注模型
1) 诸葛老师关注的人: 
zhugeSet-> {guojia, xushu}
2) 杨过老师关注的人:
 yangguoSet--> {zhuge, baiqi, guojia, xushu}
3) 郭嘉老师关注的人: 
guojiaSet-> {zhuge, yangguo, baiqi, xushu, xunyu)
4) 我和杨过老师共同关注: 
SINTER zhugeSet yangguoSet--> {guojia, xushu}
5) 我关注的人也关注他(杨过老师): 
SISMEMBER guojiaSet yangguo 
SISMEMBER xushuSet yangguo
6) 我可能认识的人: 
SDIFF yangguoSet zhugeSet->(zhuge, baiqi}


ZSet结构

ZSet常用操作
ZADD key score member [[score member]]	//往有序集合key中加入带分值元素
ZREM key member [member …]		//从有序集合key中删除元素
ZSCORE key member 			//返回有序集合key中元素member的分值
ZINCRBY key increment member		//为有序集合key中元素member的分值加上increment 
ZCARD key				//返回有序集合key中元素个数
ZRANGE key start stop [WITHSCORES]	//正序获取有序集合key从start下标到stop下标的元素
ZREVRANGE key start stop [WITHSCORES]	//倒序获取有序集合key从start下标到stop下标的元素

Zset集合操作
ZUNIONSTORE destkey numkeys key [key ...] 	//并集计算
ZINTERSTORE destkey numkeys key [key …]	//交集计算


ZSet应用场景
Zset集合操作实现排行榜
1)点击新闻
ZINCRBY  hotNews:20190819  1  守护香港
2)展示当日排行前十
ZREVRANGE  hotNews:20190819  0  9  WITHSCORES 
3)七日搜索榜单计算
ZUNIONSTORE  hotNews:20190813-20190819  7 
hotNews:20190813  hotNews:20190814... hotNews:20190819
4)展示七日排行前十
ZREVRANGE hotNews:20190813-20190819  0  9  WITHSCORES

其他高级命令

keys:全量遍历键,用来列出所有满足特定正则字符串规则的key,当redis数据量比较大时,性能比较差,要避免使用
Redis核心数据结构实战与高性能原理剖析_第2张图片

scan:渐进式遍历键
SCAN cursor [MATCH pattern] [COUNT count]
scan 参数提供了三个参数,第一个是cursor 整数值(hash桶的索引值),第二个是 key 的正则模式,第三个是一次遍历的key的数量(参考值,底层遍历的数量不一定),并不是符合条件的结果数量。第一次遍历时,cursor 值为 0,然后将返回结果中第一个整数值作为下一次遍历的 cursor。一直遍历到返回的 cursor 值为 0 时结束。
注意:但是scan并非完美无瑕, 如果在scan的过程中如果有键的变化(增加、 删除、 修改) ,那么遍历效果可能会碰到如下问题: 新增的键可能没有遍历到, 遍历出了重复的键等情况, 也就是说scan并不能保证完整的遍历出来所有的键, 这些是我们在开发时需要考虑的。

Redis核心数据结构实战与高性能原理剖析_第3张图片

Info:查看redis服务运行信息,分为 9 大块,每个块都有非常多的参数,这 9 个块分别是:
Server 服务器运行的环境参数
Clients 客户端相关信息
Memory 服务器运行内存统计数据
Persistence 持久化信息
Stats 通用统计数据
Replication 主从复制相关信息
CPU CPU 使用情况
Cluster 集群信息
KeySpace 键值对统计数量信息

Redis核心数据结构实战与高性能原理剖析_第4张图片

connected_clients:2                  # 正在连接的客户端数量

instantaneous_ops_per_sec:789        # 每秒执行多少次指令

used_memory:929864                   # Redis分配的内存总量(byte),包含redis进程内部的开销和数据占用的内存
used_memory_human:908.07K            # Redis分配的内存总量(Kb,human会展示出单位)
used_memory_rss_human:2.28M          # 向操作系统申请的内存大小(Mb)(这个值一般是大于used_memory的,因为Redis的内存分配策略会产生内存碎片)
used_memory_peak:929864              # redis的内存消耗峰值(byte)
used_memory_peak_human:908.07K       # redis的内存消耗峰值(KB)

maxmemory:0                         # 配置中设置的最大可使用内存值(byte),默认0,不限制,一般配置为机器物理内存的百分之七八十,需要留一部分给操作系统
maxmemory_human:0B                  # 配置中设置的最大可使用内存值
maxmemory_policy:noeviction         # 当达到maxmemory时的淘汰策略

你可能感兴趣的:(redis,数据结构,数据库)