- 量化价值投资中的深度学习技术:TensorFlow实战
量化价值投资中的深度学习技术:TensorFlow实战关键词:量化价值投资,深度学习,TensorFlow,股票预测,因子模型,LSTM神经网络,量化策略摘要:本文将带你走进"量化价值投资"与"深度学习"的交叉地带,用小学生都能听懂的语言解释复杂概念,再通过手把手的TensorFlow实战案例,教你如何用AI技术挖掘股票市场中的价值宝藏。我们会从传统价值投资的痛点出发,揭示深度学习如何像"超级分析
- OpenWebUI(8)源码学习-后端utils/telemetry追踪遥测模块
目录目录结构说明`constants.py`核心作用:主要功能:示例代码片段:`exporters.py`核心作用:主要类:`LazyBatchSpanProcessor`特点:技术亮点:`instrumentors.py`核心作用:插桩对象包括:钩子函数(Hooks):Instrumentor类:插桩流程:`setup.py`核心作用:主要功能:典型调用方式:✨总体架构与价值技术亮点总结✅开发建
- 【人工智能】Spring AI Alibaba,一个面向 Java 开发者的开源框架,它旨在简化将人工智能(AI)功能集成到应用程序中的过程。
本本本添哥
A-AIGC人工智能大模型人工智能javaspring
一、SpringAIAlibaba介绍SpringAIAlibaba是一个面向Java开发者的开源框架,它旨在简化将人工智能(AI)功能集成到应用程序中的过程。该项目基于SpringAI构建,并且是阿里云通义系列模型及服务在JavaAI应用开发领域的最佳实践。SpringAIAlibaba的目标是为开发者提供一套高层次的AIAPI抽象以及与云原生基础设施的深度集成方案,从而帮助他们快速构建智能应用
- 模型融合与人机协同:构建人机共生的智能未来
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在科技日新月异的今天,人工智能(AI)已经成为了我们生活中不可或缺的一部分。从智能手机,到自动驾驶汽车,再到医疗诊断,AI的应用已经渗透到了我们生活的方方面面。然而,尽管AI的发展已经取得了显著的成就,但是我们仍然面临着一个重大的挑战:如何让AI系统更好地理解和适应人类的需求,以实现人机共生的智能未来。为了解决这个问题,越来越多的研究者开始探索模型融合和人机协同的方法。2.核心概念与联
- vLLM 优化与调优:提升模型性能的关键策略
强哥之神
人工智能深度学习计算机视觉deepseek智能体vllm
在当今人工智能领域,大语言模型(LLM)的应用日益广泛,而优化和调优这些模型的性能成为了至关重要的任务。vLLM作为一种高效的推理引擎,提供了多种策略来提升模型的性能。本文将深入探讨vLLMV1的优化与调优策略,帮助读者更好地理解和应用这些技术。抢占式调度(Preemption)由于Transformer架构的自回归特性,有时键值缓存(KVcache)空间不足以处理所有批量请求。在这种情况下,vL
- S7-300 400与S7-200 SMART PLC以太网通讯(S7协议)资源文件介绍
滑展妙Bernice
S7-300400与S7-200SMARTPLC以太网通讯(S7协议)资源文件介绍【下载地址】S7-300400与S7-200SMARTPLC以太网通讯S7协议资源文件介绍本资源文件详细解析了S7-300400与S7-200SMARTPLC通过以太网进行通讯的技术细节,涵盖硬件连接、软件配置及通讯调试等关键环节。通过学习,您将掌握S7协议在PLC通讯中的实际应用,提升自动化与电气工程领域的专业技能
- Spring Data Neo4j 与后端人工智能算法的数据交互
AI大模型应用实战
springneo4j人工智能ai
SpringDataNeo4j与后端人工智能算法的数据交互关键词:SpringDataNeo4j、图数据库、人工智能算法、数据交互、知识图谱、图神经网络、数据集成摘要:本文深入探讨了如何利用SpringDataNeo4j框架实现后端人工智能算法与图数据库的高效数据交互。文章首先介绍了图数据库和人工智能算法的基本概念,然后详细解析了SpringDataNeo4j的核心架构和原理。接着,通过实际代码示
- Python爬虫实战:爬取ETF基金持仓变化
Python爬虫项目
python爬虫开发语言信息可视化数据分析
1.项目背景ETF(Exchange-TradedFund,交易型开放式指数基金)作为一种在交易所上市交易的基金,其持仓信息对于投资者具有重要参考价值。了解ETF的持仓变化,可以帮助投资者判断市场趋势和资金流向。本文将通过Python爬虫技术,自动化地获取ETF基金的持仓变化数据,进行存储和分析。2.技术选型与环境准备2.1技术选型编程语言:Python3.8+爬虫框架:Scrapy数据解析:Be
- ResNet:深度卷积神经网络的里程碑
心想事“程”
小知识点cnn人工智能神经网络
一、引言在深度学习的发展历程中,深度卷积神经网络(CNN)不断演进,旨在提升对图像等数据的特征提取与分类能力。然而,随着网络层数的增加,传统CNN面临着梯度消失、梯度爆炸以及退化等棘手问题,训练变得愈发困难。2015年,由微软研究院提出的ResNet(ResidualNetworks,残差网络)横空出世,它以独特的残差学习思想,成功攻克了这些难题,在ImageNet竞赛中大放异彩,开创了深度神经网
- Go - 项目收藏
1、谷歌官方维护了一个基于go语言的开源项目列表:https://github.com/golang/go/wiki/Projects2、[知乎网]有哪些值得学习的Go语言开源项目?3、[知乎用户:hackstoic]看过awesome-go项目,汇总了很多go开源项目。但是awesome-go收集了太全了,而且每个项目没有描述。因此我自己根据go语言中文社区提供的资料,还有互联网企业架构设计中的
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- MacOS系统安装Docker(非常详细)从零基础入门到精通,看完这一篇就够了_mac安装docker
2501_90249219
dockereureka容器
选择默认配置就行,Docker会自动设置一些大多数开发人员必要的配置。这里我们跳过就好。运行Docker在应用程序中找到Docker程序图标,点击以启动Docker,启动之后我们会发现右上角工具栏中多了一个小鲸鱼的图片,这个就是Docker啦~真的好可爱~Docker桌面应用程序打开后,就是首页的学习中心界面。通过小鲸鱼中的AboutDockerDesktop可以查看Docker的版本可以看到版本
- 【AI大模型】深入解析预训练:大模型时代的核心引擎
我爱一条柴ya
学习AI记录深度学习人工智能aipythonAI编程算法
预训练已成为现代人工智能,尤其是自然语言处理和计算机视觉领域的基石技术。它彻底改变了模型开发范式,催生了BERT、GPT等革命性模型。本文将系统阐述预训练的核心概念、原理、方法、应用及挑战。一、预训练的本质:为何需要它?核心问题:数据标注的瓶颈监督学习依赖海量高质量标注数据,获取成本极高(时间、金钱、专业知识)。对于复杂任务(如理解语义、生成文本),标注难度呈指数级上升。标注数据稀缺导致模型泛化能
- 广州曼顿2P数字微断:保护电力设备的安全守护者
mdkk678
安全
在现代社会,电力设备的安全运行对各行各业至关重要。然而,电力系统中存在各种电压波动、过载和短路等问题,可能对设备造成损害。为了保护电力设备免受这些问题的影响,广州曼顿推出了2P数字微断器。本文将介绍这一创新产品的特点和优势,以及它对电力设备的保护作用。广州曼顿科技有限公司专注用户侧智慧数字电气产品研制,以及智慧电能服务大数据云平台建设。基于人工智能技术,大幅提升人触电时的生命安全保障,以及电气火灾
- Python爬虫小白入门指南,成为大牛必须经历的三个阶段
学习任何一门技术,都应该带着目标去学习,目标就像一座灯塔,指引你前进,很多人学着学着就学放弃了,很大部分原因是没有明确目标,所以,一定要明确学习目的,在你准备学爬虫前,先问问自己为什么要学习爬虫。有些人是为了一份工作,有些人是为了好玩,也有些人是为了实现某个黑科技功能。不过可以肯定的是,学会了爬虫能给你的工作提供很多便利。小白入门必读作为零基础小白,大体上可分为三个阶段去实现。第一阶段是入门,掌握
- 语言模型 RLHF 实践指南(一):策略网络、价值网络与 PPO 损失函数
在使用ProximalPolicyOptimization(PPO)对语言模型进行强化学习微调(如RLHF)时,大家经常会问:策略网络的动作概率是怎么来的?价值网络的得分是如何计算的?奖励从哪里来?损失函数怎么构建?微调后的旧轨迹还能用吗?这篇文章将以语言模型强化学习微调为例,结合实际实现和数学公式,深入解析PPO的关键计算流程。1️⃣策略网络:如何计算动作概率?策略网络πθ(a∣s)\pi_\t
- Python通关秘籍之基础教程(一)
Smile丶Life丶
Python通关指南:从零基础到高手之路python开发语言后端
引言在编程的世界里,Python就像一位温和而强大的导师,它以简洁优雅的语法和强大的功能吸引着无数初学者和专业人士。无论你是想开发网站、分析数据、构建人工智能,还是仅仅想学习编程思维,Python都是你的理想选择。Python的魅力在于它的易读性和广泛的应用场景。它的代码就像英语句子一样自然,即使是完全没有编程经验的人也能快速上手。同时,Python拥有庞大的生态系统,从Web开发(Django、
- 多模态大模型发展全景:从架构创新到应用突破
陈敬雷-充电了么-CEO兼CTO
python大模型多模态大模型AIGC机器学习深度学习DeepSeek
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】《GPT多模态大模型与AIAgent智能体》新出书籍配套视频【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录GPT多模态大模型系列四多模态大模型发展全景:从架构创新到应用突破更多技术内容总结GPT多模态大模型系列四多模态大模型
- Python爬虫在社交平台数据挖掘中的应用:深入探索用户互动
程序员威哥
python爬虫数据挖掘
引言社交媒体已经成为全球用户互动的主要平台,每天都有大量的信息生成,用户之间的互动行为如点赞、评论、分享、转发等构成了宝贵的数据资源。如何利用这些互动数据为商业决策、用户行为分析以及产品优化提供支持,已经成为数据科学与大数据分析领域的一个重要课题。Python作为一款强大的编程语言,凭借其丰富的爬虫库和数据分析工具,已经成为挖掘社交平台数据的重要工具。在本文中,我们将通过Python爬虫技术,深入
- Vue3 学习教程,从入门到精通,使用 VSCode 开发 Vue3 的详细指南(3)
知识分享小能手
前端开发vue3网页开发学习前端javascriptvue.jsvue3vue前端框架
使用VSCode开发Vue3的详细指南本文将详细介绍如何使用VisualStudioCode(VSCode)开发Vue3项目,包括创建项目、打开项目、运行第一个入门程序,并涵盖关键的语法知识点及使用方法。每个知识点都将提供具体的案例代码,并附有详细注释。此外,还将提供一些入门案例,帮助您快速上手Vue3开发。目录准备工作创建Vue3项目在VSCode中打开Vue3项目运行第一个入门程序Vue3关键
- Three.js引擎开发:Three.js动画系统实现_(9).Three.js中的骨骼动画实现
chenlz2007
游戏开发javascriptnginx开发语言vr性能优化ecmascript前端
Three.js中的骨骼动画实现在上一节中,我们介绍了如何在Three.js中加载和显示3D模型。接下来,我们将深入探讨如何在Three.js中实现骨骼动画。骨骼动画是一种高级的动画技术,它通过控制模型的骨骼来驱动模型的动画,广泛应用于虚拟角色的动画制作。在本节中,我们将学习如何在Three.js中实现骨骼动画,包括骨骼动画的基本原理、如何加载带有骨骼的模型、如何创建和控制动画混合器(Animat
- 突破性能瓶颈,几个高性能Python网络框架,高效实现网络应用
引言随着互联网和大数据时代的到来,高性能网络应用的需求日益增加。Python作为一种流行的编程语言,在高性能网络编程领域也具有广泛的应用。本文将深入探讨基于Python的几种高性能网络框架,分析它们各自的优势和适用场景,帮助开发者选择最适合自己需求的网络框架这里插播一条粉丝福利,如果你正在学习Python或者有计划学习Python,想要突破自我,对未来十分迷茫的,可以点击这里获取最新的Python
- 嵌入式学习-Day6
不想学习\??!
学习
c语言day6模拟获取co2,pm2.5的数值,并对co2的浓度,pm2.5的浓度做出划分,详情划分在代码注释首先写写出模拟获取数值的函数,但是由于要对浓度划分,所以先枚举出来等级划分typedefenum{Excellent,//默认0往下递增Good,Average,Poor}QualityLevel;接着写出模拟获取co2函数(在这里用到了static关键字,静态函数能够确保只在co2的c文
- 嵌入式学习-Day8
不想学习\??!
学习
c语言day8通过过指针来访问寄存器#defineGPIO_CTLO((uint32_t*)0x40012000)GPIO_CTLO=0XFFFFFFFF;0x40012000是一个十六进制数值,此时编译器不认为他是一个地址通过强制转换,让编译器认为他是一个地址,(uint32_t*)0x40012000此时可以将0x40012000理解为定义指针变量时,uint32_t*p中的p*((uint3
- 新手向:实现验证码程序
nightunderblackcat
Java新手开发语言javamavenspringintellij-ideaspringbootspringcloud
本文将从零开始,通过一个简单的验证码程序。即使你没有任何编程基础,也能跟着这篇文章一步步学习。第一章:Java开发环境搭建1.1安装JDK要开始Java编程,首先需要安装Java开发工具包(JDK)。JDK是Java开发的核心,包含了运行Java程序所需的工具和库。访问Oracle官网下载适合你操作系统的JDK运行安装程序,按照提示完成安装配置环境变量(这一步很重要,确保你可以在任何目录下运行Ja
- 一文搞懂 Cursor 内部工作原理~
zz_jesse
介绍了Cursor,一个结合了AI技术的代码编辑器,它通过深度学习和语义索引的方式,提升了开发者的工作效率。Cursor通过与VSCode相似的界面和功能,以及自己的AI特性,实现了代码的智能化编辑和错误检查。译文从这开始~~你可能已经看到新闻:OpenAI正以高达30亿美元的价格收购Windsurf!与此同时,Cursor的母公司Anysphere也正在以90亿美元估值融资9亿美元!这对于代码生
- MiniMind:3小时训练26MB微型语言模型,开源项目助力AI初学者快速入门
nine是个工程师
关注人工智能语言模型开源
开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流来自全栈程序员nine的探索与实践,持续迭代中。欢迎关注评论私信交流~在大型语言模型(LLaMA、GPT等)日益流行的今天,一个名为MiniMind的开源项目正在AI学习圈内引起广泛关注。这个项目让初学者能够在3小时内从零开始训练出一个仅26.88MB大小的微型语言模型,体积仅为GPT-3的七千分之一,却完整覆盖了从数据处理到模型
- 如何让AI真正理解你的意图(自适应Prompt实战指南)
nine是个工程师
大语言模型人工智能prompt
目前的LLM模型,在理解用户意图方面,正在使用自适应Prompt技术,来提升模型的理解能力。目前使用deepseek推理模型能明显看到自适应的一个过程。前言:为什么你的AI总是"答非所问"?相信很多人都遇到过这样的情况:你问:“帮我写一个Python爬虫”AI答:给你一堆理论知识和完整教程(你只想要简单代码)你问:“推荐一部电影”AI答:推荐了《教父》(你想看轻松喜剧)你问:“解释一下机器学习”A
- 如何创建Python工程目录
九月恒心
Pythonpython自动测试
如何创建一个简单但是比较规范的python工程目录,本文是学习了LearnPythontheHardWay相关内容后做的一些笔记。安装python第三方包1.pipfromhttp://pypi.python.org/pypi/pip用于安装python第三方包的工具2.distributefromhttp://pypi.python.org/pypi/distribute已被弃用,是SetupT
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理