- uniapp小程序无感刷新token
一只一只妖
uni-app小程序前端
request.js//request.jsimport{getApptoken,getStoredApptoken}from'./tokenRequest'//从合并模块导入//全局配置constMAX_RETRIES=1//最大重试次数constbaseURL='https://your-api.com'//请求队列和刷新状态letrequestsQueue=[]letisRefreshing
- 字典树前缀匹配
hi error.cn
经验分享
字典树前缀匹配什么是字典树(Trie)字典树(Trie),又称单词查找树或键树,是一种有序树结构的数据结构,常用于字符串关联查找的应用场景中。其主要特点是每个节点代表一个字符,并且从根到子节点的路径上的字符连起来构成所有在字典中的前缀。由于这种特性,字典树特别适合进行前缀匹配和自动补全等操作。字典树的基本结构字典树由节点(Node)和边(Edge)组成。每个节点表示一个字符或为空终结符,而边则代表
- 防抖在vue中应用
kkkkkkkkira
vue.js前端javascript
防抖(Debouncing)定义:在一段时间内只执行一次函数,常用于用户停止操作后才执行的场景。应用:适用于搜索输入框、窗口调整、搜索按钮等场景,避免频繁触发事件处理函以下伪代码…constdebouncedGetEntries:nullactivated:{debouncedGetEntries=this.createDebounce(this.getEntries,300)}constcrea
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(Advanced RAG[1])MultiQuery retriever详解?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain
【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])MultiQueryretriever详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])MultiQueryretriever详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1]
- OpenWebUI(11)源码学习-后端config.py配置文件
青苔猿猿
AI大模型openwebui学习env环境变量配置
目录文件名:`config.py`功能概述:主要功能点详解1.**初始化和数据库迁移**2.**数据库配置与持久化配置管理**✅SQLAlchemy模型类`Config`✅PersistentConfig类3.**OAuth登录配置**4.**用户权限与功能控制**5.**RAG(Retrieval-AugmentedGeneration)配置**6.**图像生成配置**7.**代码解释器配置**
- 基于Deepseek+RAG构建企业知识库:文档预处理与数据整理
大势下的牛马
搭建本地gpt人工智能RAGDeepseek知识库
在当今数字化时代,企业知识库的构建对于知识管理和高效决策至关重要。基于Deepseek+RAG(Retrieval-AugmentedGeneration)技术构建企业知识库,能够有效整合企业内外部知识资源,实现知识的快速检索和精准应用。而在这一过程中,文档预处理与数据整理是关键的基础环节,直接关系到知识库的质量和后续应用效果。一、文件预处理:格式转换与数据清洗(一)支持格式与转换要求优先格式:在
- linux 安装docker并部署Dify
Samale、随风
linuxdocker运维
环境:腾讯云Centos9Stream1.安装dockeryuminstalldocker#yuminstalldocker失败Error:Errordownloadingpackages:netavark-2:1.15.1-1.el9.x86_64:Cannotdownload,allmirrorswerealreadytriedwithoutsuccess#UpdateandCleanYumC
- net.ipv4.tcp_syn_retries
scan724
nginx
node2:/root#sysctl-p|grepsynerror:"net.bridge.bridge-nf-call-ip6tables"isanunknownkeyerror:"net.bridge.bridge-nf-call-iptables"isanunknownkeyerror:"net.bridge.bridge-nf-call-arptables"isanunknownkeyne
- 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
weisian151
人工智能人工智能语言模型自然语言处理
RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合外部知识检索与大语言模型(LLM)生成能力的技术框架,旨在提升生成式AI在问答、内容创作等任务中的准确性、实时性和领域适应性。1、核心概念大语言模型(LLM)的两大局限性:时效性不足:LLM的训练数据截止于某一时间点,无法获取最新信息(如2025年后的新事件)。知识幻觉:当问题超出模型训练数据范围时,LLM
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- 使用 C++/Faiss 加速海量 MFCC 特征的相似性搜索
whoarethenext
c++faiss开发语言
使用C++/Faiss加速海量MFCC特征的相似性搜索引言在现代音频处理应用中,例如大规模声纹识别(SpeakerRecognition)、音乐信息检索(MusicInformationRetrieval)或音频事件检测(AudioEventDetection),我们通常需要从海量的音频库中快速找到与给定查询音频最相似的样本。这个过程的核心技术是对音频内容进行特征提取和高效的相似性搜索。MFCC(
- LangChain核心组件全解析
北辰alk
AIlangchain
文章目录一、核心架构组件1.模型I/O(ModelI/O)2.检索(Retrieval)3.记忆(Memory)4.链(Chains)5.代理(Agents)二、关键支持组件1.回调系统(Callbacks)2.文档加载器(DocumentLoaders)3.文本分割器(TextSplitters)4.向量存储(VectorStores)三、高级架构组件1.工具集成(Tools)2.工作流(Wor
- ARMv8 创建1、2、3级页表代码与注释
liuluyang530
armv8mmu页表
对下面的地址空间创建3级页表//level1table,4entries://00000000-3FFFFFFF,1GBblock,DDR//40000000-7FFFFFFF,1GBblock,DDR//80000000-BFFFFFFF,1GBblock,DDR//C0000000-FFFFFFFF,pointtolevel2tabel////level2table,512entries://
- ARMv8 创建3级页表示例
liuluyang530
FPGA验证ARMv8armv8页表mmu
最近在研究armv8页表创建过程,顺带做了一个如下形式的页表,//level1table,4entries://00000000-3FFFFFFF,1GBblock,DDR//40000000-7FFFFFFF,1GBblock,DDR//80000000-BFFFFFFF,1GBblock,DDR//C0000000-FFFFFFFF,pointtolevel2tabel////level2ta
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- 从维基百科到知识图谱:用 DSPy、OpenAI 和 TiDB 构建 GraphRAG 的奇妙旅程
步子哥
AGI通用人工智能知识图谱tidb人工智能
在信息爆炸的时代,如何快速从海量数据中提取有用信息,成为了技术发展的重要方向。传统的RAG(Retrieval-AugmentedGeneration)方法虽然在信息检索领域表现出色,但随着需求复杂度的提升,GraphRAG(基于知识图谱的RAG)逐渐成为更优的解决方案。本文将带您一步步了解如何利用DSPy、OpenAI和TiDBVectorDatabase,从维基百科数据构建一个GraphRAG
- LangChain4j如何自定义文档转换器实现数据清洗?
古斯塔夫歼星炮
LangChain4j提供了3种RAG(Retrieval-AugmentedGeneration,检索增强生成)实现,我们通常在原生或高级的RAG实现中,要对数据进行清洗,也就是将外接知识库中的原数据进行噪音去除,留下有价值的信息。例如在带有HTML标签的文本中,HTML标签就是噪音,他对于搜索结果是没有任何帮助,甚至会影响查询结果的,因此我们就需要将HTML标签进行清除。那问题来了,怎么进行数
- 安装Python3.12报错:HTTP 429 TOO MANY REQUESTS for url <https://mirrors.ustc.edu.cn/anaconda/pkgs/free/li
安装Python3.12报错(base)[xxx@hadoop104python_shell]$condacreate--namepythonThirteenpython=3.12报错如下:Retrievingnotices:…working…ERRORconda.notices.fetch:get_channel_notice_response(63):Requesterrorforchanne
- LangChain检索器的核心功能与查询逻辑源码级分析(81)
Android 小码蜂
LangChain框架入门langchain人工智能深度学习
LangChain检索器的核心功能与查询逻辑源码级分析I.检索器在LangChain中的定位与作用1.1检索器的核心价值在LangChain框架中,检索器(Retriever)承担着从海量数据中快速定位相关信息的关键角色。其核心价值在于将用户输入与知识库中的内容进行匹配,为语言模型的推理提供上下文支持。例如,在问答系统中,检索器会根据用户提问从文档库中筛选出最相关的段落,避免语言模型因缺乏背景信息
- 提示词工程推荐阅读论文
司南锤
LLMprompt人工智能自然语言处理
论文目录提示工程少样本提示思维链提示自洽性生成知识提示自动提示工程多模态提示提示技巧对抗提示提示工程PromptEngineeringforText-BasedGenerativeModels论文链接:https://arxiv.org/abs/2107.13586简介:本文概述了提示工程,并讨论了它在各种基于文本的生成模型中的应用。少样本提示Few-shotLearningwithRetriev
- RAG技术全面对比研究:探索最优检索增强生成策略
检索增强生成(RAG)技术全景解析:从基础到前沿在当今信息爆炸的时代,如何从海量数据中快速准确地获取所需信息,是人工智能领域的一大挑战。Retrieval-AugmentedGeneration(RAG,检索增强生成)技术应运而生,它结合了检索和生成的优势,通过从大量文档中检索相关信息,再利用这些信息生成高质量的回答。本文将系统性地介绍18种RAG技术,通过概念解析、代码示例和实际应用场景分析,帮
- Advanced RAG:下一代检索增强生成技术详解
北辰alk
AI人工智能
文章目录一、核心演进维度二、关键技术组件1.智能检索子系统2.动态知识管理3.生成控制器三、核心增强技术1.递归检索(RecursiveRetrieval)2.假设性检索(HypotheticalDocumentEmbedding)3.自适应分块(AdaptiveChunking)四、生产级架构设计完整系统架构关键优化点五、典型应用场景1.专业领域问答系统2.企业知识中枢3.实时决策支持六、评估指
- 深入探索 Vanna:让数据库交互更智能
从零开始学习人工智能
数据库交互
深入探索Vanna:让数据库交互更智能在数字化时代,与数据库进行高效交互是许多开发者、数据分析师和企业面临的挑战。传统的SQL查询编写不仅需要对数据库结构有深入的了解,还需要花费大量的时间和精力来调试和优化。Vanna,一个基于Python的开源工具,通过结合检索增强(RetrievalAugmentation)和大型语言模型(LLM),为这一问题提供了一个创新的解决方案。本文将深入探讨Vanna
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- 由浅入深:Python异步函数调用的艺术 - 从脚本到API架构设计
Ven%
pythonpython网络开发语言
文章目录引言:异步编程的新范式一、基础篇:事件循环中的直接调用1.1理解异步执行模型1.2简单调用示例1.3关键注意事项二、进阶篇:API接口中的异步调用2.1为什么需要API封装?2.2FastAPI实现示例2.3调用对比分析三、架构篇:分层设计的最佳实践3.1问题:紧耦合的陷阱3.2解决方案:三层架构设计3.2.1核心业务层(core/retrieval.py)3.2.2API接口层(api/
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)Text Splitters详解 ?
【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)TextSplitters详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Retrieval组件)TextSplitters详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十四章(LangChain与Re
- 深入探索MySQL C API:使用C语言操作MySQL数据库
努力学习的小赵同志
项目实战数据库mysql
目录引言一.MySQLCAPI简介二.MySQLCAPI核心函数2.1初始化和连接2.2配置和执行2.3处理结果2.4清理和关闭2.5错误处理三.MySQL使用过程四.实现CRUD操作4.1创建数据库并建立表编辑4.2添加数据(Create)编辑编辑编辑4.3修改数据(Update)编辑4.4删除数据(Delete)4.5查询数据(Retrieve)结语引言在软件开发中,数据库是存储、检索和操作数
- CentOS:yum报错“Could not resolve host: mirrorlist.centos.org; Unknown error“解决办法(2024有效)
py明天会更好
Java开发centoslinux运维docker
最近在学Docker容器,需要配置Vmware+CentOS环境,在其过程中需要安装yum的一个工具包:yuminstall-yyum-utils发生报错:Loadedplugins:fastestmirrorDeterminingfastestmirrorsCouldnotretrievemirrorlisthttp://mirrorlist.centos.org?arch=x86_64&rel
- 使用Chaindesk进行简单高效的文档检索
2501_92325368
langchain
##技术背景介绍Chaindesk是一个开源的文档检索平台,它帮助将个人数据与大型语言模型结合起来,实现高效的信息搜索和数据分析。Chaindesk的核心功能是通过创建数据存储库(datastore)并与大型语言模型进行交互,以提供快捷准确的文档检索能力。##核心原理解析Chaindesk通过一种称为Retriever的组件实现数据检索。Retriever可以与不同的数据存储库进行交互,拉取相关文
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后