- 【OpenCV 】第三章: 图像运算:加法运算、位运算、掩码、位平面分解、加密、数字水印、脸部打码
宝贝儿好
OpenCVopencv图像处理python算法
第三章:图像运算图像加法运算1、"+"2、cv2.add()函数3、图像加权和:cv2.addWeighted()函数图像位运算(位逻辑运算)1、按位与运算:cv2.bitwise_and()函数2、按位或运算:cv2.bitwise_or()函数3、按位非运算:cv2.bitwise_not()函数4、按位异或运算:cv2.bitwise_xor()函数掩模(掩码)参数图像与数值的运算图像位平面
- 2.6 聚焦:Word Embedding
少林码僧
AI大模型应用实战专栏wordembedding
聚焦:WordEmbeddingWordEmbedding(词嵌入)是一种将词语转化为低维向量表示的技术,使得词语在数学空间中具有语义上的相似性。它是自然语言处理(NLP)中不可或缺的一部分,为文本数据提供了强大的表示能力。与传统的基于词频的词袋模型(Bag-of-Words)相比,WordEmbedding能够捕捉到词语之间更深层的语义和上下文信息。1.词嵌入的定义与作用WordEmbeddin
- 人工智能之数学基础:一个小例子帮你快速搞懂极大线性无关向量组
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能线性代数机器学习极大线性无关向量组深度学习神经网络
本文重点在上一节课程中,我们学习了线性相关和线性无关。当线性相关的时候,那么说明这组向量至少存在一个向量可以被其它向量给表示,可以被表示就说明这个向量就是可有可无的,可以被替代的,这里就涉及到极大线性无关向量组的概念了,本文对此进行学习。极大无关向量组的定义与性质定义在线性空间中,如果存在一个向量组,它满足以下两个条件:一是它本身是线性无关的;二是向量空间中的任何包含它的向量组,如果仍然保持线性无
- Pytorch: torch.diag()创建对角线张量
湫兮之风
pytorchpytorch人工智能python
torch.diag()torch.diag是PyTorch中的一个函数,用于从给定的矩阵中提取对角线元素,或者构造一个以给定对角线元素为值的对角矩阵。这个函数对于矩阵分解和转换等操作非常重要。如果输入是一个向量(1D张量),torch.diag会返回一个以该向量为对角线元素的2D方阵。如果输入是一个矩阵(2D张量),则返回一个包含输入矩阵对角线元素的1D张量。torch.diag还允许你指定对角
- 项目进度管理:如何使用甘特图实现精准跟踪?
一、甘特图——项目进度管理的得力助手(一)甘特图的基本概念与构成甘特图(GanttChart)又称横道图、条状图,出现于20世纪初,是一种常用于项目管理的、按照时间进度标出工作活动的图表,以提出者亨利・L・甘特(HenrryL.Ganntt)先生的名字命名。它是一个二维平面图,用横轴表示项目进度或活动时间,比如可以按日期为单位,展示项目的整体时间范围,像从项目启动到结束所涵盖的天数、周数、月数等;
- Grape-RAG
disgare
AIai
Grape-RAG传统RAG的局限性图的优点用知识图谱来呈现数据关系GraphRAG传统RAG的局限性经典的RAG架构以向量数据库(VectorDB)为核心来检索语义相似性上下文,让大语言模型(LLM)不需要重新训练就能够获取最新的知识,其工作流如下图所示:这一架构目前广泛应用于各类AI业务场景中,例如问答机器人、智能客服、私域知识库检索等等。虽然RAG通过知识增强一定程度上缓解了LLM幻觉问题,
- 一行代码搞定加载glove预训练词向量
peanutwang
python机器学习人工智能
加载glove预训练词向量再也不用glove2word2vec转换啦!以前加载glove预训练词向量的方法fromgensim.scripts.glove2word2vecimportglove2word2vecglove2word2vec('glove.6B.50d.txt','word2vec50d.txt')其实就是在原来的txt文件前面加上了一行信息,行和列。word10.1230.134
- 【水果识别】SVM水果成熟检测系统(含苹果 香蕉 橙子)【含GUI Matlab源码 11052期】含报告
Matlab武动乾坤
Matlab图像处理(进阶版)matlab
Matlab武动乾坤博客之家博主简介:985研究生,Matlab领域科研开发者;座右铭:行百里者,半于九十。代码获取方式:CSDNMatlab武动乾坤—代码获取方式更多Matlab图像处理仿真内容点击①Matlab图像处理(进阶版)⛳️关注CSDNMatlab武动乾坤,更多资源等你来!!⛄一、SVM水果成熟检测系统SVM(支持向量机)水果成熟检测系统的原理和流程如下:原理:1SVM是一种监督学习算
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 什么是射频?射频基本架构?
Zebros
架构射频工程笔记
什么是射频?射频系统架构?一、认识射频1、射频信号射频(RadioFrequency),即高频交流变化电磁波的简称,可理解为无线电的代名词,描绘那些依赖无线技术进行通信的系统,特指频率范围在3kHz~300GHz的具有远距离传输能力的高频电磁波。电磁波无处不在,根据频率不同划分成不同领域,从低频到高频依次有:无线电、微波、红外线、可见光、紫外线、x射线、伽马射线等。射频归属于无线电中,再高的的频率
- 关于sklearn.svm.SVC与.NuSVC的区别以及参数介绍
_Magic
机器学习实战withpython
0.区别SVC与NuSVC是类似的方法,但是接受稍微不同的参数集合并具有不同的数学公式,并且NuSVC可以使用参数来控制支持向量的个数,以下代码默认的是多分类1.SVC#coding:utf-8fromsklearnimportsvmfromnumpyimport*X=array([[0],[1],[2],[3]])y=array([0,1,2,3])clf=svm.SVC()clf.fit(X,
- Mac安装java及多版本快速切换
nanason
Javamacosjavajdkmacbash
安装JDK法1.brew安装#旧adoptopenjdk8#brewinstall--caskhomebrew/cask-versions/adoptopenjdk8#新adoptopenjdk8brewinstall--casktemurin8brewsearchjdk会报错,查了下可能是库的问题,Homebrew的adoptopenjdk-jreCask定义中的appcast属性已被弃用,需要
- 计算机网络基础知识点简记
UV Youth
计算机网络网络
OSI七层网络模型TCP/IP四层网络模型模型图解IP地址与子网划分基础概念IPV4与IPV6的区别子网划分的目的子网掩码的使用CIDR表示法路由器与交换机TCP与UDP协议HTTP与HTTPS协议DNS域名系统网络攻击与防御机制网络安全协议网络性能优化云计算基础
- C++的STL库介绍及使用(初学者请食用)
陌晽叶吖
c++开发语言
C++STL(标准模板库)是C++中提供的一个强大而广泛的库,包含了多种常用的模板类和算法。对于初学者来说,掌握STL的基础是非常重要的,它能大大提高代码的效率和简洁性。下面是适用于C++STL库初学者的使用方法,涵盖了常用的容器、算法和迭代器等基本内容。1.STL容器STL容器是存储数据的类模板,常见的容器包括:Vector(向量)List(链表)Deque(双端队列)Map(映射)Set(集合
- XRP 新高背后是 Ripple 策动《纽约邮报》的谋划?
web3区块链
作者:Techub热点速递撰文:Yangz,TechubNews对于XRP投资者而言,昨日行情不可谓不刺激。晨间,美SEC提交针对Ripple的上诉开庭陈述,要求上诉法院重新评判有关证券法的裁定。尽管Ripple团队即时做出了回应,称「上诉书是对已失败论点的重新阐述,很可能不会被下届政府采纳」,但受此影响,XRP仍旧在半小时内下挫约6.5%,跌破3USDT。此后,XRP则一直徘徊在3USDT至3.
- 知识图谱中的word2vec 技术是做什么的?
kcarly
知识图谱入门知识图谱word2vec人工智能
Word2Vec是一种将单词转换为向量表示的技术,由Google在2013年提出。这项技术的核心思想是通过大规模文本数据训练神经网络模型,从而将单词映射到低维稠密的向量空间中。这些向量能够捕捉到单词之间的语义和语法关系,使得相似或相关的单词在向量空间中彼此靠近。Word2Vec的基本原理Word2Vec主要包括两种训练模型:CBOW(ContinuousBagofWords)和Skip-gram。
- 搭建个人AI知识库:RAG与本地模型实践指南
ai开发知识库
引言你是否想过拥有一个私人订制的AI助手,能够随时为你提供最个性化的信息?本文将带你一步步搭建一个基于本地模型和RAG技术的个人知识库。搭建本地模型环境os:archlinux内存:32gcpu:6核12线程python:3.12.7docker27.3.1+docker-compose向量库:milvus2.4.13+attu2.4(客户端)ollamapacman-Sollamasystemc
- Spring AI VectorStoreChatMemoryAdvisor
王小工
AIspring人工智能oracle
SpringAI中的VectorStoreChatMemoryAdvisor是一个重要的组件,它实现了长期记忆功能,能够将用户提出的问题及模型的回答存储到向量数据库中。以下是对SpringAIVectorStoreChatMemoryAdvisor的详细解析:一、功能概述VectorStoreChatMemoryAdvisor的主要功能是将聊天对话中的历史记录存储到向量数据库中,以便在后续对话中提
- 网络名称解析:IP,掩码(netmask),网关(gateway),DNS?
章鱼丸仔
网络网络
文章目录一、IP地址A、IP地址格式B、网络号码与主机号码C、广播地址、网段地址二、IP地址分配三、子网掩码四、CIDR什么是CIDR?CIDR表示法五、gateway默认网关六、dns-nameserve域名服务器一、IP地址每个IP地址都是由“网络号+主机号”两部分组成。IP地址管理机构在分配IP地址时,只分配网络号,而剩下的主机号则由得到该网络号的单位自行分配。IP地址由32位二进制数组成,
- python分段线性插值_计算方法(3)——分段插值法(附Python程序)
weixin_39900206
python分段线性插值
在上一节计算方法(2)——插值法(附Python程序)当中,主要讲了插值法,介绍了龙格现象,并给出了插值法的代码。这一讲主要分段插值中的分段线性插值和分段Hermite插值,并给出分段插值的Python程序。在此之前需要注意一下,n为区间数,n+1为插值节点的个数。分段线性插值分段线性插值,需要两个列表,一个用于存放各点的x坐标,一个用于存放各点的y坐标。因为分段插值的算法需要x坐标按顺序增长,而
- 批量作业调度、数据挖掘,这几款应该是今年 “最值得推荐” 的ETL工具了
加菲盐008
taskctlKettlekettleetl批量作业调度数据挖掘taskctl
工具传送门:Taskctl商业付费版(付费)TaskctlWeb商业免费版(永久免费)Kettle(开源免费)Datastage(付费)ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步。ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。下面给大家介绍一下什么是ETL以及
- 【从零开始入门unity游戏开发之——C#篇46】C#补充知识点——命名参数和可选参数
向宇it
unityc#游戏引擎编辑器开发语言
考虑到每个人基础可能不一样,且并不是所有人都有同时做2D、3D开发的需求,所以我把【零基础入门unity游戏开发】分为成了C#篇、unity通用篇、unity3D篇、unity2D篇。【C#篇】:主要讲解C#的基础语法,包括变量、数据类型、运算符、流程控制、面向对象等,适合没有编程基础的同学入门。【unity通用篇】:主要讲解unity的基础通用的知识,包括unity界面、unity脚本、unit
- 【线性代数】列主元法求矩阵的逆
BlackPercy
线性代数Julialang线性代数矩阵机器学习
列主元方法是一种用于求解矩阵逆的数值方法,特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵,然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵AAA的逆的步骤:步骤1:初始化构造增广矩阵[A∣I][A|I][A∣I],其中III是nnn阶单位矩阵。步骤2:列主元选择对于第kkk列(k=1,2,…,nk=1,2,\ldots,nk=1,2,…,n),找到列主元,即找到iki
- 构建一个查询分析系统
AWsggdrg
数据库python
技术背景介绍在构建一个查询分析系统时,需要能够加载文档、使用聊天模型、生成嵌入、创建向量存储并执行检索。这些过程的目标是将用户输入的查询优化,以实现更为精准的检索结果。本文将通过一个端到端的示例展示如何使用查询分析提升检索结果的相关性。我们将着眼于如何对LangChain的YouTube视频进行检索,并通过查询分析解决原始用户问题直接传递给搜索引擎时可能出现的失败模式。核心原理解析查询分析的核心在
- 数据结构——堆详解(c语言版)
吹个泡泡(c++服务端开发)
数据结构c语言
目录1堆的概念和结构和性质1.1堆的概念和结构1.2堆的性质2堆的实现2.1堆的结构创建2.1堆的功能声明2.2堆的功能实现2.2.1打印堆数据2.2.2堆的初始化2.2.3交换函数2.2.4向下调整法2.2.5向上调整法2.2.6添加数据2.2.7删除数据2.2.8求堆的大小2.2.9获取堆顶数据2.2.10销毁堆3全部代码1堆的概念和结构和性质1.1堆的概念和结构如果有一个关键码的集合K={,
- 2024年华为OD机试真题- 英文输入法-(C++/Java/python)-OD统一考试(C卷D卷)
dijkstra2023
华为odc++pythonjava
题目描述主管期望你来实现英文输入法单词联想功能,需求如下:依据用户输入的单词前缀,从已输入的英文语句中联想出用户想输入的单词。按字典序输出联想到的单词序列,如果联想不到,请输出用户输入的单词前缀。注意英文单词联想时区分大小写缩略形式如"don’t"判定为两个单词"don"和“t”输出的单词序列不能有重复单词,且只能是英文单词,不能有标点符号输入描述输入两行首行输入一段由英文单词word和标点构成的
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- PostgreSQL - pgvector 插件构建向量数据库并进行相似度查询
花千树-010
RAG数据库postgresqlAI编程
在现代的机器学习和人工智能应用中,向量相似度检索是一个非常重要的技术,尤其是在文本、图像或其他类型的嵌入向量的操作中。本文将介绍如何在PostgreSQL中安装pgvector插件,用于存储和检索向量数据,并展示如何通过Python脚本向数据库插入向量并执行相似度查询。一、安装PostgreSQL并配置pgvector插件1.安装PostgreSQL首先,确保你已经安装了PostgreSQL。可以
- 在线CAD绘制墙体(网页中开发室内设计CAD软件)
前言室内平面图中墙体是最重要的图形之一,其中砖墙、混凝土墙、钢架墙、隔墙、隔热墙等类型的墙在设计图中均有不同的表现方式,墙体的用途一般可以分为一般墙、虚墙、卫生隔断、阳台挡板、矮墙等,根据不同的需求绘制对应的墙体能够增强建筑设计的专业性和准确性。下面我们将介绍如何使用mxcad实现基础墙体功能,并展示其实践运用效果。下述的墙体功能为一个基于mxcad开发的demo示例,因此存在无法百分百适配用户实
- 为AI聊天工具添加一个知识系统 之54 为事务处理 设计 基于DDD的一个 AI操作系统 来处理维度
一水鉴天
人工语言软件智能智能制造大数据开发语言
本文要点要点Architecture程序它被设计为一个双面神结构的控制器,它的两侧一侧编译执行另一侧解释执行,自已则是一个翻译器--通过提供两个不同取向之间的结构映射的显示器(带图形用户接口GUI和命令行接口CLI两种接口)。一个Architecture模型(表面模型接口类)一个Architecture模型采用“本”“迹”二分法,对应一个html模板。该模板中提供三个动态区划>>>代表html占位
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep