[Linux]pthread学习笔记

<UNIX环境高级编程(第二版)> 线程学习P287-P297

#include <pthread.h>

//新建线程

int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg);



//线程终止

void pthread_exit(void *rval_ptr);//线程自身主动退出

int pthread_join(pthread_t tid, void **rval_ptr);//其他线程阻塞自身,等待tid退出



//线程清理

void pthread_cleanup_push(void (*rtn)(void *), void *arg);

void pthread_cleanup_pop(int execute);

补充说明:

1. 线程创建

pthread_create()函数返回值0,表示创建成功,线程id保存载tidp中;失败则返回非零,需自行处理,不会修改errno值

2. 线程终止

a. 任一线程调用exit, _Exit, _exit都将导致整个进程终止;

b. 单个线程退出方式有三种:

  1> 线程执行函数start_rtn()中使用return返回,返回值为线程退出码;

  2> 被同一个进程的其他线程使用pthread_cancel()取消;

  3> 线程自身调用了pthread_exit();

说明:pthread_join(pthread_t tid, void **rval_ptr)函数会阻塞调用线程,直到tid线程通过上述三种方式终止退出,且return/pthread_exit()方式会设置相应线程退出码rval_ptr,而pthread_cancel()取消的线程,将退出码设置为PTHREAD_CANCELED.

3. 线程清理处理程序(thread cleanup handler)

3.a> pthread_cleanup_push()与pthread_cleanup_pop()均为<pthread.h>中实现的宏定义,具体实现如下:

pthread_cleanup_push and pthread_cleanup_pop are macros and must always

   be used in matching pairs at the same nesting level of braces.  */

#  define pthread_cleanup_push(routine, arg) \

  do {									      \

    __pthread_cleanup_class __clframe (routine, arg)



/* Remove a cleanup handler installed by the matching pthread_cleanup_push.

   If EXECUTE is non-zero, the handler function is called. */

#  define pthread_cleanup_pop(execute) \

    __clframe.__setdoit (execute);					      \

  } while (0)

 可见push/pop中的{/}是一一对应的,因此pthread_cleanup_push/pop()也应一一对应出现,否则编译出错。

3.b> 当线程执行下列之一操作时调用清理函数,thread_cleanup_push由栈结构实现,注意清理程序调用的顺序,先入后出。

  1: 调用pthread_exit()时,而直接return不会出发清理函数;

  2: 相应取消请求pthread_cancel()时;

  3: 使用非零execute参数调用pthread_cleanup_pop()时;

尤其需注意pthread_cleanup_pop()参数不同及此语句所处位置不同而有不同效果。

看此代码实例,注意return或pthread_exit()位置不同导致pthread_cleanup_pop()不同参数的效果变化。

#include <pthread.h>

void testPointerSize()

{

	void *tret;

	printf("size of pointer in x86-64:%d\n",sizeof(tret));	

	//result is 8 in x86-64.

	//which is 4 in x86-32.



	printf("size of int in x86-64:%d\n",sizeof(int));	

	//result is 4 in x86-64.

	//which is also 4 in x86-32.

}

void cleanup(void *arg)

{

	printf("cleanup:%s\n",(char *)arg);

}

void * thr_fn1(void *arg)

{

	printf("thread 1 start\n");

	pthread_cleanup_push(cleanup, "thread 1 first handler");

	pthread_cleanup_push(cleanup, "thread 1 second handler");

	if(arg)

		return ((void *)1);//arg !=0 ,return here.

//	return here will not triger any cleanup.

	pthread_cleanup_pop(0);

	pthread_cleanup_pop(1);

	return ((void *)2);//will not run this

}

void * thr_fn2(void *arg)

{

	printf("thread 2 start\n");

	pthread_cleanup_push(cleanup, "thread 2 first handler");

	pthread_cleanup_push(cleanup, "thread 2 second handler");

	pthread_cleanup_pop(0);

	pthread_cleanup_pop(1);

	return ((void *)2);

//	return here can triger cleanup second handler;

}



void * thr_fn3(void *arg)

{

	printf("thread 3 start\n");

	pthread_cleanup_push(cleanup, "thread 3 first handler");

	pthread_cleanup_push(cleanup, "thread 3 second handler");

	if(arg)

		pthread_exit((void *)3);

	//pthread_exit() here will triger both cleanup first&second handler.

	pthread_cleanup_pop(1);

	pthread_cleanup_pop(0);

	pthread_exit((void *)3);//wont run this

}

void * thr_fn4(void *arg)

{

	printf("thread 4 start\n");

	pthread_cleanup_push(cleanup, "thread 4 first handler");

	pthread_cleanup_push(cleanup, "thread 4 second handler");

	pthread_cleanup_pop(1);

	pthread_cleanup_pop(0);

	pthread_exit((void *)4);

	//pthread_exit() here will triger cleanup second handler.

}



int main(void)

{

	testPointerSize();

	int err;

	pthread_t tid1, tid2, tid3, tid4;

	void *tret;

	

	err = pthread_create(&tid1, NULL, thr_fn1, (void *)1);

	err = pthread_join(tid1,&tret);	

	printf("thread 1 exit code %d\n",(int)tret);

	

	err = pthread_create(&tid2, NULL, thr_fn2, (void *)2);

	err = pthread_join(tid2, &tret);

	printf("thread 2 exit code %d\n",(int)tret);



	err = pthread_create(&tid3, NULL, thr_fn3, (void *)3);

	err = pthread_join(tid3,&tret);	

	printf("thread 3 exit code %d\n",(int)tret);

	

	err = pthread_create(&tid4, NULL, thr_fn4, (void *)4);

	err = pthread_join(tid4, &tret);

	printf("thread 4 exit code %d\n",(int)tret);

}

 运行结果:

[root@hello testData]# ./test 

size of pointer in x86-64:8

size of int in x86-64:4

thread 1 start

thread 1 exit code 1

thread 2 start

cleanup:thread 2 first handler

thread 2 exit code 2

thread 3 start

cleanup:thread 3 second handler

cleanup:thread 3 first handler

thread 3 exit code 3

thread 4 start

cleanup:thread 4 second handler

thread 4 exit code 4

  由上述测试程序总结如下:

1> push与pop间的return,将导致清理程序不被触发;

2> 位于pop之后return,由pop的参数确定是否触发清理程序,非零参数触发,零参数不触发;

3> push/pop间的pthread_exit(),将触发所有清理函数;

4>位于pop之后的pthread_exit()时,pop参数决定是否触发清理程序;

其实,上述四种情况只是测试验证了前文3.b所说三个条件,加深理解。

 

参考文献:

1. Posix线程编程指南(4)

2. <UNIX环境高级编程(第2版)> P295-296程序

3. pthread_cleanup_push()/pthread_cleanup_pop()的详解

4. Linux中vim的列编辑实例 (Mark记录)

你可能感兴趣的:(pthread)