tmp_
为前缀并以日期为后缀,备份表必须以 bak_
为前缀并以日期 (时间戳) 为后缀没有特殊要求(即 InnoDB 无法满足的功能如:列存储,存储空间数据等)的情况下,所有表必须使用 InnoDB 存储引擎(MySQL5.5 之前默认使用 Myisam,5.6 以后默认的为 InnoDB)。
InnoDB 支持事务,支持行级锁,更好的恢复性,高并发下性能更好。
兼容性更好,统一字符集可以避免由于字符集转换产生的乱码,不同的字符集进行比较前需要进行转换会造成索引失效,如果数据库中有存储 emoji 表情的需要,字符集需要采用 utf8mb4 字符集。
使用 comment 从句添加表和列的备注,从一开始就进行数据字典的维护
500 万并不是 MySQL 数据库的限制,过大会造成修改表结构,备份,恢复都会有很大的问题。
可以用历史数据归档(应用于日志数据),分库分表(应用于业务数据)等手段来控制数据量大小
分区表在物理上表现为多个文件,在逻辑上表现为一个表;
谨慎选择分区键,跨分区查询效率可能更低;
建议采用物理分表的方式管理大数据。
避免更多的关联操作。
在数据库中存储文件会严重影响数据库性能,消耗过多存储空间。
文件(比如图片)这类大的二进制数据通常存储于文件服务器,数据库只存储文件地址信息。
一般来说,设计关系数据库时需要满足第三范式,但为了满足第三范式,我们可能会拆分出多张表。而在进行查询时需要对多张表进行关联查询,有时为了提高查询效率,会降低范式的要求,在表中保存一定的冗余信息,也叫做反范式。但要注意反范式一定要适度。
安全隐患极大,要对生产环境抱有敬畏之心!
存储字节越小,占用也就空间越小,性能也越好。
a.某些字符串可以转换成数字类型存储比如可以将 IP 地址转换成整型数据。
数字是连续的,性能更好,占用空间也更小。
MySQL 提供了两个方法来处理 ip 地址
INET_ATON()
:把 ip 转为无符号整型 (4-8 位)INET_NTOA()
:把整型的 ip 转为地址插入数据前,先用 INET_ATON()
把 ip 地址转为整型,显示数据时,使用 INET_NTOA()
把整型的 ip 地址转为地址显示即可。
b.对于非负型的数据 (如自增 ID,整型 IP,年龄) 来说,要优先使用无符号整型来存储。
无符号相对于有符号可以多出一倍的存储空间
SIGNED INT -2147483648~2147483647
UNSIGNED INT 0~4294967295
c.小数值类型(比如年龄、状态表示如 0/1)优先使用 TINYINT 类型。
a. 建议把 BLOB 或是 TEXT 列分离到单独的扩展表中。
MySQL 内存临时表不支持 TEXT、BLOB 这样的大数据类型,如果查询中包含这样的数据,在排序等操作时,就不能使用内存临时表,必须使用磁盘临时表进行。而且对于这种数据,MySQL 还是要进行二次查询,会使 sql 性能变得很差,但是不是说一定不能使用这样的数据类型。
如果一定要使用,建议把 BLOB 或是 TEXT 列分离到单独的扩展表中,查询时一定不要使用 select *
而只需要取出必要的列,不需要 TEXT 列的数据时不要对该列进行查询。
2、TEXT 或 BLOB 类型只能使用前缀索引
因为 MySQL 对索引字段长度是有限制的,所以 TEXT 类型只能使用前缀索引,并且 TEXT 列上是不能有默认值的
除非有特别的原因使用 NULL 值,应该总是让字段保持 NOT NULL。
对于日期类型来说, 一定不要用字符串存储日期。可以考虑 DATETIME、TIMESTAMP 和 数值型时间戳。
decimal 类型为精准浮点数,在计算时不会丢失精度。占用空间由定义的宽度决定,每 4 个字节可以存储 9 位数字,并且小数点要占用一个字节。并且,decimal 可用于存储比 bigint 更大的整型数据
不过, 由于 decimal 需要额外的空间和计算开销,应该尽量只在需要对数据进行精确计算时才使用 decimal 。
如果一个表包含过多字段的话,可以考虑将其分解成多个表,必要时增加中间表进行关联。
索引并不是越多越好!索引可以提高效率同样可以降低效率。
索引可以增加查询效率,但同样也会降低插入和更新的效率,甚至有些情况下会降低查询效率。
因为 MySQL 优化器在选择如何优化查询时,会根据统一信息,对每一个可以用到的索引来进行评估,以生成出一个最好的执行计划,如果同时有很多个索引都可以用于查询,就会增加 MySQL 优化器生成执行计划的时间,同样会降低查询性能。
全文索引不适用于 OLTP 场景。
5.6 版本之前,一个 sql 只能使用到一个表中的一个索引,5.6 以后,虽然有了合并索引的优化方式,但是还是远远没有使用一个联合索引的查询方式好。
InnoDB 是一种索引组织表:数据的存储的逻辑顺序和索引的顺序是相同的。每个表都可以有多个索引,但是表的存储顺序只能有一种。
InnoDB 是按照主键索引的顺序来组织表的
建立索引的目的是:希望通过索引进行数据查找,减少随机 IO,增加查询性能 ,索引能过滤出越少的数据,则从磁盘中读入的数据也就越少。
覆盖索引:就是包含了所有查询字段 (where,select,order by,group by 包含的字段) 的索引
覆盖索引的好处:
尽量避免使用外键约束
尽量不在数据库做运算,复杂运算需移到业务应用里完成。这样可以避免数据库的负担过重,影响数据库的性能和稳定性。数据库的主要作用是存储和管理数据,而不是处理数据。
要找到最需要优化的 SQL 语句。要么是使用最频繁的语句,要么是优化后提高最明显的语句,可以通过查询 MySQL 的慢查询日志来发现需要进行优化的 SQL 语句。
避免使用双%号的查询条件。如:a like '%123%'
,(如果无前置%,只有后置%,是可以用到列上的索引的)
一个 SQL 只能利用到复合索引中的一列进行范围查询。如:有 a,b,c 列的联合索引,在查询条件中有 a 列的范围查询,则在 b,c 列上的索引将不会被用到。
在定义联合索引时,如果 a 列要用到范围查找的话,就要把 a 列放到联合索引的右侧,使用 left join 或 not exists 来优化 not in 操作,因为 not in 也通常会使用索引失效。
SELECT *
会消耗更多的 CPU。SELECT *
无用字段增加网络带宽资源消耗,增加数据传输时间,尤其是大字段(如 varchar、blob、text)。SELECT *
无法使用 MySQL 优化器覆盖索引的优化(基于 MySQL 优化器的“覆盖索引”策略又是速度极快,效率极高,业界极为推荐的查询优化方式)SELECT <字段列表>
可减少表结构变更带来的影响、如:
insert into t values ('a','b','c');
应使用:
insert into t(c1,c2,c3) values ('a','b','c');
隐式转换会导致索引失效如:
select name,phone from customer where id = '111';
通常子查询在 in 子句中,且子查询中为简单 SQL(不包含 union、group by、order by、limit 从句) 时,才可以把子查询转化为关联查询进行优化。
子查询性能差的原因: 子查询的结果集无法使用索引,通常子查询的结果集会被存储到临时表中,不论是内存临时表还是磁盘临时表都不会存在索引,所以查询性能会受到一定的影响。特别是对于返回结果集比较大的子查询,其对查询性能的影响也就越大。由于子查询会产生大量的临时表也没有索引,所以会消耗过多的 CPU 和 IO 资源,产生大量的慢查询。
对于 MySQL 来说,是存在关联缓存的,缓存的大小可以由 join_buffer_size 参数进行设置。
在 MySQL 中,对于同一个 SQL 多关联(join)一个表,就会多分配一个关联缓存,如果在一个 SQL 中关联的表越多,所占用的内存也就越大。
如果程序中大量的使用了多表关联的操作,同时 join_buffer_size 设置的也不合理的情况下,就容易造成服务器内存溢出的情况,就会影响到服务器数据库性能的稳定性。
同时对于关联操作来说,会产生临时表操作,影响查询效率,MySQL 最多允许关联 61 个表,建议不超过 5 个。
数据库更适合处理批量操作,合并多个相同的操作到一起,可以提高处理效率。
in 的值不要超过 500 个,in 操作可以更有效的利用索引,or 大多数情况下很少能利用到索引。
order by rand() 会把表中所有符合条件的数据装载到内存中,然后在内存中对所有数据根据随机生成的值进行排序,并且可能会对每一行都生成一个随机值,如果满足条件的数据集非常大,就会消耗大量的 CPU 和 IO 及内存资源。
推荐在程序中获取一个随机值,然后从数据库中获取数据的方式。
对列进行函数转换或计算时会导致无法使用索引
不推荐:
where date(create_time)='20190101'
推荐:
where create_time >= '20190101' and create_time < '20190102'
大批量操作可能会造成严重的主从延迟
主从环境中,大批量操作可能会造成严重的主从延迟,大批量的写操作一般都需要执行一定长的时间,而只有当主库上执行完成后,才会在其他从库上执行,所以会造成主库与从库长时间的延迟情况
binlog 日志为 row 格式时会产生大量的日志
大批量写操作会产生大量日志,特别是对于 row 格式二进制数据而言,由于在 row 格式中会记录每一行数据的修改,我们一次修改的数据越多,产生的日志量也就会越多,日志的传输和恢复所需要的时间也就越长,这也是造成主从延迟的一个原因
避免产生大事务操作
大批量修改数据,一定是在一个事务中进行的,这就会造成表中大批量数据进行锁定,从而导致大量的阻塞,阻塞会对 MySQL 的性能产生非常大的影响。
特别是长时间的阻塞会占满所有数据库的可用连接,这会使生产环境中的其他应用无法连接到数据库,因此一定要注意大批量写操作要进行分批。
对大表数据结构的修改一定要谨慎,会造成严重的锁表操作,尤其是生产环境,是不能容忍的。
pt-online-schema-change 它会首先建立一个与原表结构相同的新表,并且在新表上进行表结构的修改,然后再把原表中的数据复制到新表中,并在原表中增加一些触发器。把原表中新增的数据也复制到新表中,在行所有数据复制完成之后,把新表命名成原表,并把原来的表删除掉。把原来一个 DDL 操作,分解成多个小的批次进行。
见名思意,根据读写分离的名字,我们就可以知道:读写分离主要是为了将对数据库的读写操作分散到不同的数据库节点上。 这样的话,就能够小幅提升写性能,大幅提升读性能。
我简单画了一张图来帮助不太清楚读写分离的小伙伴理解。
一般情况下,我们都会选择一主多从,也就是一台主数据库负责写,其他的从数据库负责读。主库和从库之间会进行数据同步,以保证从库中数据的准确性。这样的架构实现起来比较简单,并且也符合系统的写少读多的特点。
读写分离对于提升数据库的并发非常有效,但是,同时也会引来一个问题:主库和从库的数据存在延迟,比如你写完主库之后,主库的数据同步到从库是需要时间的,这个时间差就导致了主库和从库的数据不一致性问题。这也就是我们经常说的 主从同步延迟 。
主从同步延迟问题的解决,没有特别好的一种方案(可能是我太菜了,欢迎评论区补充)。你可以根据自己的业务场景,参考一下下面几种解决办法。
1.强制将读请求路由到主库处理。
既然你从库的数据过期了,那我就直接从主库读取嘛!这种方案虽然会增加主库的压力,但是,实现起来比较简单,也是我了解到的使用最多的一种方式。
比如 Sharding-JDBC
就是采用的这种方案。通过使用 Sharding-JDBC 的 HintManager
分片键值管理器,我们可以强制使用主库。
HintManager hintManager = HintManager.getInstance();
hintManager.setMasterRouteOnly();
// 继续JDBC操作
对于这种方案,你可以将那些必须获取最新数据的读请求都交给主库处理。
2.延迟读取。
还有一些朋友肯定会想既然主从同步存在延迟,那我就在延迟之后读取啊,比如主从同步延迟 0.5s,那我就 1s 之后再读取数据。这样多方便啊!方便是方便,但是也很扯淡。
不过,如果你是这样设计业务流程就会好很多:对于一些对数据比较敏感的场景,你可以在完成写请求之后,避免立即进行请求操作。比如你支付成功之后,跳转到一个支付成功的页面,当你点击返回之后才返回自己的账户。
不论是使用哪一种读写分离具体的实现方案,想要实现读写分离一般包含如下几步:
落实到项目本身的话,常用的方式有两种:
1. 代理方式
我们可以在应用和数据中间加了一个代理层。应用程序所有的数据请求都交给代理层处理,代理层负责分离读写请求,将它们路由到对应的数据库中。
提供类似功能的中间件有 MySQL Router(官方)、Atlas(基于 MySQL Proxy)、MaxScale、MyCat。
2. 组件方式
在这种方式中,我们可以通过引入第三方组件来帮助我们读写请求。
这也是我比较推荐的一种方式。这种方式目前在各种互联网公司中用的最多的,相关的实际的案例也非常多。如果你要采用这种方式的话,推荐使用 sharding-jdbc
,直接引入 jar 包即可使用,非常方便。同时,也节省了很多运维的成本。
https://shardingsphere.apache.org/document/legacy/3.x/document/cn/manual/sharding-jdbc/usage/read-write-splitting/
MySQL binlog(binary log 即二进制日志文件) 主要记录了 MySQL 数据库中数据的所有变化(数据库执行的所有 DDL 和 DML 语句)。因此,我们根据主库的 MySQL binlog 日志就能够将主库的数据同步到从库中。
MySQL主从复制
阿里开源的一个叫做 canal 的工具。这个工具可以帮助我们实现 MySQL 和其他数据源比如 Elasticsearch 或者另外一台 MySQL 数据库之间的数据同步。
http://t.csdnimg.cn/czFvm
读写分离主要应对的是数据库读并发,没有解决数据库存储问题。试想一下:如果 MySQL 一张表的数据量过大怎么办?
分库 就是将数据库中的数据分散到不同的数据库上,可以垂直分库,也可以水平分库。
垂直分库 就是把单一数据库按照业务进行划分,不同的业务使用不同的数据库,进而将一个数据库的压力分担到多个数据库。
举个例子:说你将数据库中的用户表、订单表和商品表分别单独拆分为用户数据库、订单数据库和商品数据库。
水平分库 是把同一个表按一定规则拆分到不同的数据库中,每个库可以位于不同的服务器上,这样就实现了水平扩展,解决了单表的存储和性能瓶颈的问题。
举个例子:订单表数据量太大,你对订单表进行了水平切分(水平分表),然后将切分后的 2 张订单表分别放在两个不同的数据库。
分表 就是对单表的数据进行拆分,可以是垂直拆分,也可以是水平拆分。
垂直分表 是对数据表列的拆分,把一张列比较多的表拆分为多张表。
举个例子:我们可以将用户信息表中的一些列单独抽出来作为一个表。
水平分表 是对数据表行的拆分,把一张行比较多的表拆分为多张表,可以解决单一表数据量过大的问题。
举个例子:我们可以将用户信息表拆分成多个用户信息表,这样就可以避免单一表数据量过大对性能造成影响。
水平拆分只能解决单表数据量大的问题,为了提升性能,我们通常会选择将拆分后的多张表放在不同的数据库中。也就是说,水平分表通常和水平分库同时出现。
遇到下面几种场景可以考虑分库分表:
分片算法主要解决了数据被水平分片之后,数据究竟该存放在哪个表的问题。
id
为 1~299999
的记录分到第一个库, 300000~599999
的分到第二个库。范围分片适合需要经常进行范围查找的场景,不太适合随机读写的场景(数据未被分散,容易出现热点数据的问题)。记住,你在公司做的任何技术决策,不光是要考虑这个技术能不能满足我们的要求,是否适合当前业务场景,还要重点考虑其带来的成本。
引入分库分表之后,会给系统带来什么挑战呢?
join 操作:同一个数据库中的表分布在了不同的数据库中,导致无法使用 join 操作。这样就导致我们需要手动进行数据的封装,比如你在一个数据库中查询到一个数据之后,再根据这个数据去另外一个数据库中找对应的数据。不过,很多大厂的资深 DBA 都是建议尽量不要使用 join 操作。因为 join 的效率低,并且会对分库分表造成影响。对于需要用到 join 操作的地方,可以采用多次查询业务层进行数据组装的方法。不过,这种方法需要考虑业务上多次查询的事务性的容忍度。
事务问题:同一个数据库中的表分布在了不同的数据库中,如果单个操作涉及到多个数据库,那么数据库自带的事务就无法满足我们的要求了。这个时候,我们就需要引入分布式事务了。
分布式 ID:分库之后, 数据遍布在不同服务器上的数据库,数据库的自增主键已经没办法满足生成的主键唯一了。我们如何为不同的数据节点生成全局唯一主键呢?这个时候,我们就需要为我们的系统引入分布式 ID 了。
跨库聚合查询问题:分库分表会导致常规聚合查询操作,如 group by,order by 等变得异常复杂。这是因为这些操作需要在多个分片上进行数据汇总和排序,而不是在单个数据库上进行。为了实现这些操作,需要编写复杂的业务代码,或者使用中间件来协调分片间的通信和数据传输。这样会增加开发和维护的成本,以及影响查询的性能和可扩展性。
另外,引入分库分表之后,一般需要 DBA 的参与,同时还需要更多的数据库服务器,这些都属于成本。
Apache ShardingSphere 是一款分布式的数据库生态系统, 可以将任意数据库转换为分布式数据库,并通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。
ShardingSphere 项目(包括 Sharding-JDBC、Sharding-Proxy 和 Sharding-Sidecar)是当当捐入 Apache 的,目前主要由京东数科的一些巨佬维护。
ShardingSphere 绝对可以说是当前分库分表的首选!ShardingSphere 的功能完善,除了支持读写分离和分库分表,还提供分布式事务、数据库治理、影子库、数据加密和脱敏等功能。
ShardingSphere 提供的功能如下:
ShardingSphere 的优势如下(摘自 ShardingSphere 官方文档:https://shardingsphere.apache.org/document/current/cn/overview/open in new window):
分库分表之后,我们如何将老库(单库单表)的数据迁移到新库(分库分表后的数据库系统)呢?
比较简单同时也是非常常用的方案就是停机迁移,写个脚本老库的数据写到新库中。比如你在凌晨 2 点,系统使用的人数非常少的时候,挂一个公告说系统要维护升级预计 1 小时。然后,你写一个脚本将老库的数据都同步到新库中。
如果你不想停机迁移数据的话,也可以考虑双写方案。双写方案是针对那种不能停机迁移的场景,实现起来要稍微麻烦一些。具体原理是这样的:
想要在项目中实施双写还是比较麻烦的,很容易会出现问题。我们可以借助上面提到的数据库同步工具 Canal 做增量数据迁移(还是依赖 binlog,开发和维护成本较低)
具体使用可以查看若依和芋道都很不错
http://doc.ruoyi.vip/ruoyi-cloud/cloud/sharding.html
https://mp.weixin.qq.com/s/A2MYOFT7SP-7kGOon8qJaw