OpenCV图像匹配算法之sift

//utils.h
#ifndef _UTILS_H
#define _UTILS_H

#include 
#include 
#include 
#include 
#include 
using namespace cv;

// ORB settings
const int ORB_MAX_KPTS = 1500;
const float ORB_SCALE_FACTOR = 1.5;
const int ORB_PYRAMID_LEVELS = 3;
const float ORB_EDGE_THRESHOLD = 31.0;
const int ORB_FIRST_PYRAMID_LEVEL = 0;
const int ORB_WTA_K = 2;
const int ORB_PATCH_SIZE = 31;

// BRISK settings
const float BRISK_HTHRES = 10.0;
const int BRISK_NOCTAVES = 6;


const float DRATIO = 0.8f;							// NNDR Matching value
const float MIN_H_ERROR = 2.50f;			// Maximum error in pixels to accept an inlier

void matches2points_nndr(const std::vector& train,
                         const std::vector& query,
                         const std::vector >& matches,
                         std::vector& pmatches, float nndr);
void compute_inliers_ransac(const std::vector& matches,
                            std::vector& inliers,
                            float error, bool use_fund);
void draw_inliers(const cv::Mat& img1, const cv::Mat& img2, cv::Mat& img_com,
                  const std::vector& ptpairs, int color);

typedef struct info
{
	double t;
	int n1;
	int n2;
	int m;
	int rm;
}INFO;

void sift(char* path1, char* path2, INFO& info, bool show);
void surf(char* path1, char* path2, INFO& info, bool show);
void orb(char* path1, char* path2, INFO& info, bool show);
void brisk(char* path1, char* path2, INFO& info, bool show);
void freak(char* path1, char* path2, INFO& info, bool show);
void showInfo(INFO info);

#endif
//utils.cpp
#include "stdafx.h"
#include "utils.h"
#include 
using namespace std;

/**
 * @brief This function converts matches to points using nearest neighbor distance
 * ratio matching strategy
 * @param train Vector of keypoints from the first image
 * @param query Vector of keypoints from the second image
 * @param matches Vector of nearest neighbors for each keypoint
 * @param pmatches Vector of putative matches
 * @param nndr Nearest neighbor distance ratio value
 */
void matches2points_nndr(const std::vector& train,
                         const std::vector& query,
                         const std::vector >& matches,
                         std::vector& pmatches, float nndr) {

  float dist1 = 0.0, dist2 = 0.0;
  for (size_t i = 0; i < matches.size(); i++) {
    DMatch dmatch = matches[i][0];
    dist1 = matches[i][0].distance;
    dist2 = matches[i][1].distance;

    if (dist1 < nndr*dist2) {
      pmatches.push_back(train[dmatch.queryIdx].pt);
      pmatches.push_back(query[dmatch.trainIdx].pt);
    }
  }
}

/**
 * @brief This function computes the set of inliers estimating the fundamental matrix
 * or a planar homography in a RANSAC procedure
 * @param matches Vector of putative matches
 * @param inliers Vector of inliers
 * @param error The minimum pixelic error to accept an inlier
 * @param use_fund Set to true if you want to compute a fundamental matrix
 */
void compute_inliers_ransac(const std::vector& matches,
                            std::vector& inliers,
                            float error, bool use_fund) {

  vector points1, points2;
  Mat H = Mat::zeros(3,3,CV_32F);
  int npoints = matches.size()/2;
  Mat status = Mat::zeros(npoints,1,CV_8UC1);

  for (size_t i = 0; i < matches.size(); i+=2) {
    points1.push_back(matches[i]);
    points2.push_back(matches[i+1]);
  }

  if (use_fund == true){
    H = findFundamentalMat(points1,points2,CV_FM_RANSAC,error,0.99,status);
  }
  else {
    H = findHomography(points1,points2,CV_RANSAC,error,status);
  }

  for (int i = 0; i < npoints; i++) {
    if (status.at(i) == 1) {
      inliers.push_back(points1[i]);
      inliers.push_back(points2[i]);
    }
  }
}

//*******************************************************************************
//*******************************************************************************

/**
 * @brief This function draws the set of the inliers between the two images
 * @param img1 First image
 * @param img2 Second image
 * @param img_com Image with the inliers
 * @param ptpairs Vector of point pairs with the set of inliers
 * @param color The color for each method
 */
void draw_inliers(const cv::Mat& img1, const cv::Mat& img2, cv::Mat& img_com,
                  const std::vector& ptpairs, int color) {

  int x1 = 0, y1 = 0, x2 = 0, y2 = 0;
  float rows1 = 0.0, cols1 = 0.0;
  float rows2 = 0.0, cols2 = 0.0;
  float ufactor = 0.0, vfactor = 0.0;

  rows1 = img1.rows;
  cols1 = img1.cols;
  rows2 = img2.rows;
  cols2 = img2.cols;
  ufactor = (float)(cols1)/(float)(cols2);
  vfactor = (float)(rows1)/(float)(rows2);

  // This is in case the input images don't have the same resolution
  Mat img_aux = Mat(Size(img1.cols,img1.rows),CV_8UC3);
  resize(img2,img_aux,Size(img1.cols,img1.rows),0,0,CV_INTER_LINEAR);

  for (int i = 0; i < img_com.rows; i++) {
    for (int j = 0; j < img_com.cols; j++) {
      if (j < img1.cols) {
        *(img_com.ptr(i)+3*j) = *(img1.ptr(i)+3*j);
        *(img_com.ptr(i)+3*j+1) = *(img1.ptr(i)+3*j+1);
        *(img_com.ptr(i)+3*j+2) = *(img1.ptr(i)+3*j+2);
      }
      else {
        *(img_com.ptr(i)+3*j) = *(img_aux.ptr(i)+3*(j-img_aux.cols));
        *(img_com.ptr(i)+3*j+1) = *(img_aux.ptr(i)+3*(j-img_aux.cols)+1);
        *(img_com.ptr(i)+3*j+2) = *(img_aux.ptr(i)+3*(j-img_aux.cols)+2);
      }
    }
  }

  for (size_t i = 0; i < ptpairs.size(); i+= 2) {
    x1 = (int)(ptpairs[i].x+.5);
    y1 = (int)(ptpairs[i].y+.5);
    x2 = (int)(ptpairs[i+1].x*ufactor+img1.cols+.5);
    y2 = (int)(ptpairs[i+1].y*vfactor+.5);

    if (color == 0) {
      line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(255,255,0),1);
    }
    else if (color == 1) {
      line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(255,0,0),1);
    }
    else if (color == 2) {
      line(img_com,Point(x1,y1),Point(x2,y2),CV_RGB(0,0,255),1);
    }
  }
}


void showInfo(INFO info)
{
	printf("%-40s%d\n","The keypoints number of src image is :", info.n1);
	printf("%-40s%d\n","The keypoints number of dst image is : ", info.n2);
	printf("%-40s%d\n","The matching number is : ", info.m);
	printf("%-40s%d\n","The right result number is : ", info.rm);
	printf("%-40s%.2fs\n","The total time is : ", info.t);
	return ;
}
//sift.cpp
#include "stdafx.h"
#include 
#include 
#include "utils.h"
#include 
using namespace std;

void sift(char* path1, char* path2, INFO& info, bool show)
{
	double t1,t2;
	t1=cvGetTickCount();

	initModule_nonfree();

	Mat img1, img2;	
	img1=imread(path1,0);
	img2=imread(path2,0);
	if(img1.data==NULL)
	{
		cout<<"The image can not been loaded: "< sift_detector = FeatureDetector::create( "SIFT" );
    Ptr sift_descriptor = DescriptorExtractor::create( "SIFT" );  
    vector kpts1_sift, kpts2_sift;
	Mat desc1_sift, desc2_sift;
	Ptr matcher_l2 = DescriptorMatcher::create("BruteForce");		//欧氏距离匹配
    vector > dmatches_sift;
	vector matches_sift, inliers_sift;

	sift_detector->detect(img1,kpts1_sift);
	sift_detector->detect(img2,kpts2_sift);
	info.n1=kpts1_sift.size();
	info.n2=kpts2_sift.size();
	sift_descriptor->compute(img1,kpts1_sift,desc1_sift);
    sift_descriptor->compute(img2,kpts2_sift,desc2_sift);
	matcher_l2->knnMatch(desc1_sift,desc2_sift,dmatches_sift,2);										//匹配
	matches2points_nndr(kpts1_sift,kpts2_sift,dmatches_sift,matches_sift,DRATIO);
	info.m=matches_sift.size()/2;
	compute_inliers_ransac(matches_sift,inliers_sift,MIN_H_ERROR,false);
	info.rm=inliers_sift.size()/2;

	t2=cvGetTickCount();
	info.t=(t2-t1)/1000000.0/cvGetTickFrequency();

	Mat img1_rgb_sift = imread(path1,1);
	Mat img2_rgb_sift = imread(path2,1);
	Mat img_com_sift = Mat(Size(img1.cols*2,img1.rows),CV_8UC3);

	if(show == true)
	{
		draw_inliers(img1_rgb_sift,img2_rgb_sift,img_com_sift,inliers_sift,2);
		imshow("sift",img_com_sift);
		waitKey(0);
	}

	return;
}

使用

INFO sift_info;
sift(path1,path2,sift_info,true);
showInfo(sift_info);




你可能感兴趣的:(OpenCV,OpenCV图像匹配算法,Opencv,sift)