AcWing算法提高课-5.6.1同余方程

宣传一下 算法提高课整理

CSDN个人主页:更好的阅读体验

Start

原题链接
题目描述

求关于 x x x 的同余方程 a x ≡ 1 ( m o d b ) ax ≡ 1 \pmod b ax1(modb) 的最小正整数解。

输入格式

输入只有一行,包含两个正整数 a , b a,b a,b,用一个空格隔开。

输出格式

输出只有一行,包含一个正整数 x x x,表示最小正整数解。

输入数据保证一定有解。

数据范围

2 ≤ a , b ≤ 2 × 1 0 9 2 \le a,b \le 2 \times 10^9 2a,b2×109

输入样例:
3 10
输出样例:
7

思路

我们对 a x ≡ 1 ( m o d b ) ax ≡ 1 \pmod b ax1(modb) 进行变形:

y ∈ R y \in \mathbb{R} yR,则:

a x ≡ 1 ( m o d b ) ⇔ a x − b y = 1 ax \equiv1 \pmod b \Leftrightarrow ax-by=1 ax1(modb)axby=1

我们知道,扩展欧几里得算法可以计算形如 a x + b y = gcd ⁡ ( a , b ) ax+by=\gcd(a,b) ax+by=gcd(a,b) 的方程的解。

所以直接进行转化即可。

注意: 由于题目要求输出正整数解,所以我们输出 ( x   m o d   p + p )   m o d   p (x \bmod p + p) \bmod p (xmodp+p)modp 即可。

算法时间复杂度 O ( log ⁡ n ) O(\log n) O(logn)
AC Code

C + + \text{C}++ C++

#include 
#include 
#include 

using namespace std;

typedef long long LL;

LL exgcd(LL a, LL b, LL &x, LL &y)
{
    if (!b)
    {
        x = 1, y = 0;
        return a;
    }

    LL d = exgcd(b, a % b, y, x);
    y -= a / b * x;

    return d;
}

int main()
{
    LL a, b, x, y;
    cin >> a >> b;
    exgcd(a, b, x, y);
    cout << (x % b + b) % b << endl;
    return 0;
}

228aa7bed3e021faf24cf8560d3e47bb.gif

最后,如果觉得对您有帮助的话,点个赞再走吧!

你可能感兴趣的:(AcWing算法提高课,算法,数学,c++)