- Windows 图形显示驱动开发-WDDM 3.2-本机 GPU 围栏对象(四)
程序员王马
windows图形显示驱动开发驱动开发单片机stm32
用于创建、打开和销毁本机围栏的D3DKMT内核API引入了以下D3DKMT内核模式API来创建和打开本机围栏对象。D3DKMTCreateNativeFence/D3DKMT_CREATENATIVEFENCED3DKMTOpenNativeFenceFromNTHandle/D3DKMT_OPENNATIVEFENCEFROMNTHANDLEDxgkrnl调用现有的D3DKMTDestroySy
- 希音(Shein)前端开发面试题集锦和参考答案
大模型大数据攻城狮
arcgiswebpack前端攻击xsscsrfreact前端面试
用Node写过什么工具或npm包在实际开发中,使用Node编写过多种实用工具和npm包。自动化构建工具开发了一个简单的自动化构建工具,用于处理前端项目的资源压缩和合并。在前端项目中,为了优化性能,需要对CSS和JavaScript文件进行压缩,减少文件体积,同时将多个小文件合并成一个大文件,减少HTTP请求。这个工具使用Node的fs模块进行文件的读写操作,通过terser库对JavaScript
- Docker中GPU的使用指南
俞兆鹏
云原生实践docker容器运维
在当今的计算领域,GPU(图形处理单元)已经成为了加速各种计算密集型任务的关键硬件,特别是在深度学习、科学模拟和高性能计算等领域。Docker作为流行的容器化平台,允许开发者将应用程序及其依赖打包成一个可移植的容器,在不同的环境中运行。当需要在Docker容器中利用GPU的计算能力时,我们需要进行一些特定的配置和设置。本文将详细介绍如何在Docker中使用GPU,从环境准备到实际应用,帮助你充分利
- 基于TableStore的海量气象格点数据解决方案实战
阿里云云栖号
数据存储与数据库exceptionJava核心技术
前言气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点。气象数据中大量的数据是时空数据,记录了时间和空间范围内各个点的各个物理量的观测量或者模拟量,每天产生的数据量常在几十TB到上百TB的规模,且在爆发性增长。如何存储和高效的查询这些气象数据越来越成为一个难题。传统的方案常常采用关系型数据库加文件系统的方式实现这类气象数据的存储和实时查询,这种方案在可扩展性、可维护性和性能上都
- 【MATLAB源码-第269期】基于matlab的鱼鹰优化算法(OOA)无人机三维路径规划,输出做短路径图和适应度曲线.
Matlab程序猿小助手
路径规划matlab算法开发语言人工智能无人机网络机器人
操作环境:MATLAB2022a1、算法描述鱼鹰优化算法(OspreyOptimizationAlgorithm,简称OOA)是一种新兴的基于自然界生物行为的智能优化算法,其灵感来自于鱼鹰这种海鸟在捕猎过程中的独特行为。鱼鹰是一种生活在全球范围内的猛禽,以鱼类为主食。它们的捕猎方式非常高效和精准,能够通过快速调整飞行路径和俯冲角度来捕捉猎物。鱼鹰的捕猎行为不仅表现出高度的灵活性,还能在不同环境中表
- 【MATLAB源码-第164期】基于matlab的轴承故障三种谱图:细化谱,功率谱,倒谱对比分析仿真。
Matlab程序猿小助手
通信原理matlab开发语言算法机器人人工智能机器学习计算机视觉
操作环境:MATLAB2022a1、算法描述轴承故障分析是一种重要的维护和监控手段,能够帮助工程师及时发现和解决轴承在运行中可能遇到的各种问题。在轴承故障诊断中,通常会使用到三种谱图分析方法:细化谱(FineSpectrum)、功率谱(PowerSpectrum)和倒谱(Cepstrum)分析。这三种方法各有特点,适用于不同的故障类型和分析场景。以下是对这三种谱图的详细描述。细化谱分析理论基础细化
- 【MATLAB源码-第128期】基于matlab的雷达系统回波信号仿真,输出脉压,MTI,MTD等图像。
Matlab_猿助手
调制解调通信原理MATLABmatlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述雷达(RadioDetectionandRanging)是一种使用无线电波来探测和定位物体的系统。它的基本原理是发射无线电波,然后接收这些波从目标物体上反射回来的信号。通过分析这些反射波,雷达能够确定物体的位置、速度、方向和其他特性。历史背景雷达技术起源于20世纪初。最初的发展动机主要是军事上的需求,特别是在第二次世界大战期间,雷达在侦测敌机和舰船上发挥
- 常见问题,自动化效率的技巧
程序员的世界你不懂
playwright自动化数据库java单元测试测试工具
1.显式等待优化从测试搜索功能的角度,如何优化下面的代码?test("Theexplicitwaits",async({page})=>{ awaitpage.goto("https://blog.martioli.com/playwright-tips-and-tricks-2/") awaitpage.getByText('Playwrighttipsandtricks#2').scrollI
- 使用 Node.js 部署高性能应用:从入门到进阶
Echo_Wish
运维探秘让你快速入坑运维node.js
使用Node.js部署高性能应用:从入门到进阶大家好,我是你们的运维伙伴Echo_Wish。今天我们来探讨如何使用Node.js部署高性能应用。Node.js因其异步非阻塞I/O模型、高效的事件驱动架构以及强大的包管理器npm,成为了现代Web开发的重要工具。我们将从简单的应用入手,逐步深入,探索如何优化Node.js应用的性能。希望你能从中受益!一、Node.js应用的基本部署首先,我们需要一个
- 集团公司数字化转型及数据资源中心建设方案:蓝图规划、总体流程、数据模型设计、数据区定位与数据模型设计流程、基础区数据模型设计、用户标签数据模型设计、数据开发体系框架、数据统一调度管理、ETL调度平台
数智化领地
数字化转型数据治理主数据数据仓库etl数据仓库
集团公司数字化转型及数据资源中心建设方案集团公司数字化转型及数据资源中心建设方案蓝图规划数字化转型战略目标数据资源中心定位与功能整体架构与技术选型实施路径与时间表总体流程业务流程梳理与优化数据流程规划与设计技术实施步骤与要点风险评估与应对措施数据模型设计概念数据模型构建逻辑数据模型转换物理数据模型实现模型验证与优化方法数据区定位与数据模型设计流程数据区划分原则及策略各类数据区功能定义数据模型设计流
- 三维模型点云化工具V1.0使用介绍:将三维模型进行点云化生成
是刃小木啦~
pythonpyqt工业软件软件工程
三维软件绘制的三维模型导入之后,可以生成点云,用于替代实际的激光扫描过程,当然,主要是用于点云算法的测试和验证,没法真正模拟扫描的效果,因为太过于理想化了。功能介绍将三维软件绘制的三维模型变成点云,并且支持不同的点云密度。支持添加不同的噪声,高斯噪声比较柔和,随机噪声比较明显。功能视频介绍三维模型点云化工具V1.0使用介绍:将三维模型进行点云化生成,支持不同的分辨率,支持添加噪声下载地址三维模型点
- 【yolov8】模型导出----pytorch导出为onnx模型
栗子风暴
YOLOpytorch人工智能深度学习
【yolov8】模型导出一、为什么要使用yolo的导出模式二、确保安装必要的库:三、yolov8模型导出3.1不同格式配置参数3.2导出格式四、导出模型性能优化4.1使用TensorRT导出模型有什么好处?4.2导出YOLOv8模型时,如何启用INT8量化?4.3为什么输出模型时动态输入尺寸很重要?4.4优化模型性能需要考虑哪些关键的导出参数?五、问题六、疑问训练模型的最终目标是将其部署到实际应用
- LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3
一个处女座的程序猿
NLP/LLMs成长书屋大语言模型unslothLLaMA-3LoRA
LLMs之Llama-3:基于Colab平台(免费T4-GPU)利用LLaMA-Factory的GUI界面(底层采用unsloth优化框架【加速训练5~30倍+减少50%的内存占用】)对llama-3-8b-Instruct-bnb-4bit模型采用alpaca数据集【instruction-input-output】实现CLI方式/GUI傻瓜可视化方式,进配置微调→参数行LoRA指令微调→模型推
- PCL 最小二乘拟合空间曲线
点云侠
点云进阶算法c++计算机视觉3d开发语言
目录一、曲线拟合1、算法原理2、参考文献二、代码实现三、结果展示四、测试数据本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。博客长期更新,最近一次更新时间为:2024年7月14日。①代码在PCL1.14.1中运行;②完善代码;③新增标准测试数据一、曲线拟合1、算法原理 电力线三维重建指将提取得到的单根电力线进行精确矢量化。在理想情况下,
- 【AGI】DeepSeek开源周:The whale is making waves!
LeeZhao@
AIGC重塑生活神器agi开源人工智能AIGC生活语言模型
DeepSeek开源周:Thewhaleismakingwaves!思维火花引言一、DeepSeek模型体系的技术演进1.通用语言模型:DeepSeek-V3系列2.推理优化模型:DeepSeek-R1系列3.多模态模型:Janus系列二、开源周三大工具库的技术解析1.FlashMLA:解码效率的极限突破(2025.02.24)2.DeepEP:MoE通信范式的重构(2025.02.25)3.De
- DeepSeek开源技术全景解析:从硬件榨取到AI民主化革命
大刘讲IT
开源人工智能
DeepSeek开源技术全景解析:从硬件榨取到AI民主化革命一、开源周核心成果概览2025年2月24日启动的"开源周"计划,DeepSeek团队连续发布三项底层技术突破:FlashMLA(2.24):动态资源调度算法,Hopper架构GPU性能榨取专家DeepEP(2.25):全球首个MoE全流程通信优化库DeepGEMM(2.26):300行代码重构矩阵计算范式三项技术构成完整技术栈,覆盖大模型
- 分布式基本理论 - CAP,BASE 和 RAFT 算法
Yellow明
算法分布式
分布式基本理论-CAP,BASE和RAFT算法1.分布式基本理论1.1CAP理论在理论计算机科学中,CAP定理(CAPtheorem),又被称作布鲁尔定理(Brewer’stheorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点:[1][2]一致性(Consistency)(等同于所有节点访问同一份最新的数据副本)可用性(Availability)(每次请求都能获取到非错的响应—
- Android OCR技术实现与优化指南
缘来的精彩
androidAndroidNDKocr
关于Android上OCR技术的问题。首先,用户可能想知道在Android平台上如何实现OCR识别。我应该先介绍OCR的基本概念,然后讨论不同的实现方法,比如使用Google的MLKit、Tesseract或者其他第三方SDK。接下来可能需要分步骤说明如何集成这些库到Android应用中,比如添加依赖项、编写代码示例等。同时,还要考虑不同方法的优缺点,比如MLKit的准确性和易用性,Tessera
- 存储性能调优:掌握I/O性能调优和缓存策略配置
Morris只会敲命令
缓存
引言在数字化转型加速的今天,数据已成为企业核心资产,而存储系统的性能直接影响业务响应速度、用户体验和IT基础设施的总体效率。无论是高并发交易系统、实时分析平台,还是AI训练场景,存储I/O瓶颈和缓存策略配置不当都可能引发性能雪崩。本文将从硬件层到软件层,系统性地解析存储性能调优的核心技术,并提供可落地的优化策略。1.1存储介质特性与选型HDDvs.SSDvs.NVMeHDD的机械寻道延迟(平均5-
- AdaBoost算法
Mr终游
机器学习算法决策树
目录一、核心原理:二、算法步骤三、关键优势:四.局限与解决五、代码示例(鸢尾花数据集)AdaBoost(AdaptiveBoosting)是一种经典的集成学习算法,通过组合多个弱分类器(如决策树)来构建强分类器。其核心思想是通过迭代优化残差(错误)和动态调整样本权重,逐步提升模型性能。以下是对AdaBoost的简明总结和关键要点:一、核心原理:提升法:通过顺序训练多个弱分类器,每轮专注修正前一个模
- DeepSeek本地部署教程(Windows操作系统笔记本电脑适用)
程序员辣条
AI产品经理产品经理大模型人工智能DeepSeekWindowsAI大模型
最近DeepSeek非常火,你想不想也本地部署,玩转AI呢?一、将DeepSeek部署到自己的电脑有以下好处:1.数据隐私与安全本地存储:所有数据保存在本地,避免第三方服务器存储带来的隐私风险。数据控制:完全掌控数据访问权限,防止未经授权的访问或泄露。2.性能优化低延迟:本地运行减少网络延迟,响应速度更快。资源利用:可根据硬件配置优化性能,充分利用本地计算资源。3.定制化灵活配置:可根据需求调整模
- Windows零门槛部署DeepSeek大模型:Ollama+7B参数模型本地推理全攻略
zxg45
AI大模型deepseek硅基流动AI大模型
一、为什么选择Ollama+DeepSeek组合?1.1DeepSeek模型的三大核心优势中文语境霸主:在C-Eval榜单中,7B参数版本以82.3%准确率超越Llama2-13B6硬件友好:Int4量化后仅需5.2GB存储空间,GTX1060即可运行多模态扩展:支持与StableDiffusion联动生成图文报告1.2Ollama的颠覆性价值相较于传统部署方式,Ollama带来三大突破:开箱即用
- 标量、向量、矩阵与张量:从维度理解数据结构的层次
舒旻
AI杂谈矩阵数据结构线性代数人工智能深度学习
在数学和计算机科学中,维度描述了数据结构的复杂性,而标量、向量、矩阵、张量则是不同维度的数据表示形式。它们的关系可以理解为从简单到复杂的扩展,以下是详细解析:1.标量(Scalar):0维数据定义:单个数值,没有方向,只有大小。维度:0维(无索引)。示例:温度(25℃)、年龄(30岁)、灰度图像的单个像素值(128)。特点:基础数据单元,所有复杂结构的起点。2.向量(Vector):1维数据定义:
- 智能录音工牌如何应用在员工培训效果评估上?
DuDuTalk
人工智能录音设备语音分析自然语言处理语音识别
在数字化转型加速的今天,企业对员工培训效果的重视程度日益增加。为了确保培训能够切实提升员工的工作能力和效率,许多公司开始探索新的技术和方法来优化这一过程。智能录音工牌作为新兴的技术解决方案之一,正逐渐成为评估员工培训效果的理想选择。本文将深入探讨智能录音工牌如何助力企业更精准地衡量培训成效,并推动员工技能持续进步。1、真实场景数据收集,构建全面评估体系智能录音工牌能够在员工与客户互动的过程中实时录
- 常见的限流算法有哪些
涛粒子
算法java网络
计数器算法原理:在固定的时间窗口内,对请求进行计数,当请求数量达到设定的阈值时,就开始限流,拒绝多余的请求。例如,设定1分钟的时间窗口内允许最多100个请求,那么在这1分钟内每来一个请求,计数器就加1,当计数器达到100后,后续的请求就会被拒绝,直到下一个1分钟开始,计数器重置为0重新计数。优点:实现简单,易于理解和部署,在一些对精度要求不是特别高的场景下能很好地控制流量。缺点:存在临界问题,比如
- 探索数据仓库自动化:ETL流程设计与实践
Echo_Wish
大数据高阶实战秘籍数据仓库自动化etl
探索数据仓库自动化:ETL流程设计与实践在大数据时代,数据仓库已成为企业数据管理和决策支持的核心工具。如何高效地提取、转换和加载数据(ETL),是数据仓库建设中的重要环节。本文将围绕数据仓库自动化的ETL流程设计展开,结合实际代码示例,探讨如何构建高效、稳定和可扩展的ETL解决方案。什么是ETL?ETL(Extract,Transform,Load)是指数据抽取、转换和加载,是数据仓库建设的重要步
- 深入探究LLamaFactory推理DeepSeek蒸馏模型时无法展示<think>思考过程的问题
羊城迷鹿
DeepSeekLLama-Factory思维链
文章目录问题背景初始测试与问题发现LLaMAFactory测试结果对照实验:Ollama测试系统性排查与解决方案探索1.尝试更换模板2.深入研究官方文档3.自定义模板实现优化界面展示:实现思考过程的可视化实现方法参数调整影响分析实验一实验二进入大模型应用与实战专栏|查看更多专栏内容问题背景最近在本地环境中部署了DeepSeek-R1-Distill-Qwen-1.5B,即由Qwen2.5-Math
- DeepSeek安装部署笔记(二)
山哥ol
笔记运维python
Bat批处理文件的编写第五步启动openWebUI的批处理编写1、下面的代码,复制到文本文件,再改扩展名2、这样,在桌面直接双击此文件运行第五步启动openWebUI的批处理编写1、下面的代码,复制到文本文件,再改扩展名@echooffREM关闭回显使界面更简洁setCONDA_ROOT=D:\condasetENV_NAME=openwebuiREM使用’/K’参数保持CMD窗口不关闭,并执行后
- 代码随想录算法训练营第七天|Leetcode 344.反转字符串 541. 反转字符串II 卡码网:54.替换数字
昂子的博客
算法leetcodejava数据结构
344.反转字符串建议:本题是字符串基础题目,就是考察reverse函数的实现,同时也明确一下平时刷题什么时候用库函数,什么时候不用库函数题目链接/文章讲解/视频讲解:代码随想录思路非常简单,两个指针一个指向头一个指向尾巴,对于字符串,我们定义两个指针(也可以说是索引下标),一个从字符串前面,一个从字符串后面,两个指针同时向中间移动,并交换元素。classSolution{publicvoidre
- C++ 泛型编程
四代目 水门
C++学习笔记c++开发语言
C++泛型编程一、泛型编程基础1.核心概念实现算法与数据结构的分离基于模板技术(函数模板/类模板)本质:类型参数化,减少重复代码典型应用:STL容器、迭代器、算法2.类型本质内存布局的抽象不同类型对应不同的内存分配策略二、函数模板1.基本语法cpptemplate//或template返回类型函数名(参数列表){//函数体}2.关键特性支持隐式推导和显式指定类型可重载(包括与普通函数重载)可声明为
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多