考研--二叉树

1、叉树的层次遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector> levelOrder(TreeNode* root) {
        vector> res;
        queue q;
        if(root) q.push(root);
        
        while(q.size())
        {
            vector level;
            int len = q.size();
            for(int i = 0;i < len;i ++) {
                TreeNode* t = q.front();
                q.pop();
                level.push_back(t->val);
                if(t->left) q.push(t->left);
                if(t->right) q.push(t->right);
            }
            res.push_back(level);
        }
        
        return res;
    }
};

2、前序遍历

递归
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector res;
    void dfs(TreeNode* root) {
        if(root) {
            res.push_back(root->val);
            dfs(root->left);
            dfs(root->right);
        }
    }
    vector preorderTraversal(TreeNode* root) {
        dfs(root);
        return res;
    }
};
迭代
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    
    vector preorderTraversal(TreeNode* root) {
        vector res;
        TreeNode* p = root;
        stack stk;
        while(p || stk.size())
        {
            while(p) {
                res.push_back(p->val);
                stk.push(p);
                p = p->left;
            }
            p = stk.top()->right;
            stk.pop();
        }
        return res;
    }
};

3、中序遍历

递归
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector res;
    void dfs(TreeNode* root)
    {
        if(root) {
            dfs(root->left);
            res.push_back(root->val);
            dfs(root->right);
        }
    }
    vector inorderTraversal(TreeNode* root) {
        dfs(root);
        return res;
    }
};
迭代
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector inorderTraversal(TreeNode* root) {
        vector res;
        stack stk;
        TreeNode* p = root;
        while(p || stk.size())
        {
            while(p) {
                stk.push(p);
                p = p->left;
            }
            p = stk.top();
            stk.pop();
            res.push_back(p->val);
            p = p->right;
        }
        return res;
    }
};

4、后续遍历

递归
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector res;
    void dfs(TreeNode* root)
    {
        if(root)
        {
            dfs(root->left);
            dfs(root->right);
            res.push_back(root->val);
        }
    }
    vector postorderTraversal(TreeNode* root) {
        dfs(root);
        return res;
    }
};
迭代

后续遍历的做法如下:
1、前序遍历的顺序:根,左,右
2、可以根据类型前序遍历的思想,遍历出:根,右,左
3、再通过 2 中遍历出来的顺序,通过反转得到后序遍历:左,右,根

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:

    vector postorderTraversal(TreeNode* root) {
        vector res;
        stack stk;
        TreeNode* p = root;
        while(p || stk.size())
        {
            while(p) {
                res.push_back(p->val);
                stk.push(p);
                p = p->right;
            }
            p = stk.top()->left;
            stk.pop();
        }
        reverse(res.begin(), res.end());
        return res;
    }
};

5、前序遍历 + 中序遍历构建二叉树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map pos;
    TreeNode* build(vector& preorder, vector& inorder, int pl, int pr, int il, int ir)
    {
        if(pl > pr || il > ir) return NULL;
        TreeNode* root = new TreeNode(preorder[pl]);
        int k = pos[preorder[pl]];
        int len = k - il;
        root->left = build(preorder, inorder, pl + 1, pl + len, il, k - 1);
        root->right = build(preorder, inorder, pl + len + 1, pr, k + 1, ir);
        return root;
    }
    TreeNode* buildTree(vector& preorder, vector& inorder) {
        for(int i = 0 ;i < preorder.size();i ++) pos[inorder[i]] = i;
        return build(preorder, inorder, 0, preorder.size() - 1, 0, inorder.size() - 1);
    }
};

6、中序遍历 + 后序遍历构建二叉树

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    unordered_map pos;
    TreeNode* build(vector postorder, vector& inorder, int pl, int pr, int il, int ir)
    {
        if(pl > pr || il > ir) return NULL;
        TreeNode* root = new TreeNode(postorder[pr]);
        int k = pos[postorder[pr]];
        int len = k - il;//len为前序的长度
        root->left = build(postorder, inorder, pl, pl + len - 1, il, k - 1);
        root->right = build(postorder, inorder, pl + len, pr - 1, k + 1, ir);
        return root;
    }
    TreeNode* buildTree(vector& inorder, vector& postorder) {
        for(int i = 0;i < inorder.size();i ++) pos[inorder[i]] = i;
        return build(postorder, inorder, 0, postorder.size() - 1, 0, inorder.size() - 1);
    }
};

你可能感兴趣的:(考研--二叉树)