LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树

文章目录

  • 二叉树基础理论
    • 二叉树的种类
    • 二叉树的存储方式
    • 二叉树的遍历方式
    • 二叉树的定义
  • 二叉树的递归遍历
    • 144. 二叉树的前序遍历
    • 145. 二叉树的后序遍历
    • 94. 二叉树的中序遍历
  • 二叉树的迭代遍历
    • 前序遍历(迭代法)
    • 中序遍历(迭代法)
    • 后序遍历(迭代法)

二叉树基础理论

二叉树的种类

满二叉树

满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树_第1张图片
深度为k,有2^k-1个节点的二叉树

完全二叉树

完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^(h-1) 个节点。
LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树_第2张图片

二叉搜索树
前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树。

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉排序树
    LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树_第3张图片
    平衡二叉搜索树

平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

如图:
LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树_第4张图片
C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_map底层实现是哈希表

二叉树的存储方式

二叉树可以链式存储,也可以顺序存储

那么链式存储方式就用指针, 顺序存储的方式就是用数组

顾名思义就是顺序存储的元素在内存是连续分布的,而链式存储则是通过指针把分布在散落在各个地址的节点串联一起。
LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树_第5张图片

顺序存储的方式如图:
LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树_第6张图片
如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2

二叉树的遍历方式

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。
  • 深度优先遍历
    • 前序遍历(递归法,迭代法)
    • 中序遍历(递归法,迭代法)
    • 后序遍历(递归法,迭代法)
  • 广度优先遍历
    • 层次遍历(迭代法)

对于深度优先遍历的前中后,其实指的就是中间节点的遍历顺序,只要大家记住 前中后序指的就是中间节点的位置就可以了。
看如下中间节点的顺序,就可以发现,中间节点的顺序就是所谓的遍历方式

  • 前序遍历:中左右
  • 中序遍历:左中右
  • 后序遍历:左右中
    LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树_第7张图片
    栈其实就是递归的一种是实现结构,也就说前中后序遍历的逻辑其实都是可以借助栈使用非递归的方式来实现的。
    而广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。

二叉树的定义

链式存储的二叉树节点的定义方式。

struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

二叉树的递归遍历

递归三要素

  1. 确定递归函数的参数和返回值: 确定哪些参数是递归的过程中需要处理的,那么就在递归函数里加上这个参数, 并且还要明确每次递归的返回值是什么进而确定递归函数的返回类型。

  2. 确定终止条件: 写完了递归算法, 运行的时候,经常会遇到栈溢出的错误,就是没写终止条件或者终止条件写的不对,操作系统也是用一个栈的结构来保存每一层递归的信息,如果递归没有终止,操作系统的内存栈必然就会溢出。

  3. 确定单层递归的逻辑: 确定每一层递归需要处理的信息。在这里也就会重复调用自己来实现递归的过程

以前序遍历为例:

  • 确定递归函数的参数和返回值
void traversal(TreeNode* cur, vector<int>& vec)
  • 确定终止条件
if (cur == NULL) return;
  • 确定单层递归的逻辑:前序遍历是中左右的循序,所以在单层递归的逻辑,是要先取中节点的数值,代码如下:
vec.push_back(cur->val);    // 中
traversal(cur->left, vec);  // 左
traversal(cur->right, vec); // 右

144. 二叉树的前序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void traversal(TreeNode* cur, vector<int>& vec) {
        if (cur == NULL) return;
        vec.push_back(cur->val);
        traversal(cur->left, vec);
        traversal(cur->right, vec);
    }
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> result;
        traversal(root,result);
        return result;
    }
};

145. 二叉树的后序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void traveral(TreeNode* cur, vector<int>& vec) {
        if (cur == NULL) return;
        traveral(cur->left, vec);
        traveral(cur->right, vec);
        vec.push_back(cur->val);

    }
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> result;
        traveral(root, result);
        return result;

    }
};

94. 二叉树的中序遍历

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void traversal(TreeNode* cur, vector<int>& vec) {
        if (cur == NULL) return;
        traversal(cur->left, vec);
        vec.push_back(cur->val);
        traversal(cur->right, vec);
    }
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        traversal(root, result);
        return result;
    }
};

二叉树的迭代遍历

前序遍历(迭代法)

前序遍历是中左右,每次先处理的是中间节点,那么先将根节点放入栈中,然后将右孩子加入栈,再加入左孩子。因为这样出栈的时候才是中左右的顺序。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        stack<TreeNode*> st;
        vector<int> result;
        if (root == NULL) return result;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            st.pop();
            result.push_back(node->val);
            if (node->right) st.push(node->right);
            if (node->left) st.push(node->left);
        }
        return result;

    }
};

中序遍历(迭代法)

中序遍历,中序遍历是左中右先访问的是二叉树顶部的节点,然后一层一层向下访问,直到到达树左面的最底部,再开始处理节点(也就是在把节点的数值放进result数组中),这就造成了处理顺序和访问顺序是不一致的。

那么在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        TreeNode* cur = root;
        while (cur != NULL || !st.empty()) {
            if(cur != NULL) {
                st.push(cur);
                cur = cur->left;
            }else {
                cur = st.top();
                st.pop();
                result.push_back(cur->val);
                cur = cur->right;
            }
        }
        return result;
    }
};

后序遍历(迭代法)

LeetCode刷题day11||二叉树基础理论&&二叉树的递归遍历&&二叉树的迭代遍历--二叉树_第8张图片

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root == NULL) return result;
        st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            st.pop();
            result.push_back(node->val);
            if (node->left) st.push(node->left);
            if (node->right) st.push(node->right);
        }
        reverse(result.begin(),result.end());
        return result;

    }
};

你可能感兴趣的:(leetcode,leetcode,算法,数据结构)