map 模拟与用法

map 用法

map

map 模拟

/*RBTree.h*/
#pragma once

#include 
namespace sjy
{
	enum Color
	{
		RED,
		BLACK
	};

	template <typename T>
	struct RBTreeNode
	{
		RBTreeNode(const T& data = T())
			:_left(nullptr)
			, _right(nullptr)
			, _parent(nullptr)
			, _data(data)
			, _col(RED)
		{}
		RBTreeNode<T>* _left;
		RBTreeNode<T>* _right;
		RBTreeNode<T>* _parent;
		T _data;
		Color _col;
	};

	template <typename T, typename Ref, typename Ptr>
	struct __TreeIterator
	{
		typedef RBTreeNode<T> Node;
		typedef __TreeIterator<T, Ref, Ptr> self;
		__TreeIterator(Node* node)
			:_node(node)
		{}
		self& operator++()
		{
			//node右边是nullptr, 不是header
			if (_node->_right == nullptr)
			{
				Node* cur = _node;
				Node* parent = cur->_parent;
				while (parent != nullptr)
				{
					if (parent->_left == cur)
					{
						_node = parent;
						break;
					}
					else
					{
						cur = parent;
						parent = parent->_parent;
					}
				}
			}
			//node右边是一个正常节点
			else if (_node->_right->_right != _node)
			{
				Node* cur = _node->_right;
				while (cur->_left != nullptr)
				{
					cur = cur->_left;
				}
				_node = cur;
			}
			//node右边是header
			else
			{
				_node = _node->_right;
			}
			return *this;
		}
		self& operator--()
		{
			//node左边是nullptr, 不是header
			if (_node->_left == nullptr)
			{
				Node* cur = _node;
				Node* parent = cur->_parent;

				while (parent != nullptr)
				{
					if (parent->_right == cur)
					{
						_node = parent;
						break;
					}
					else
					{
						cur = parent;
						parent = parent->_parent;
					}
				}

			}
			//node左边是一个正常节点
			else if (_node->_left->_left != _node)
			{
				Node* cur = _node->_left;
				while (cur->_right != nullptr)
				{
					cur = cur->_right;
				}
				_node = cur;
			}
			//node左边是header
			else
			{
				_node = _node->_left;
			}
			return *this;
		}
		Ref operator*()
		{
			return _node->_data;
		}
		Ptr operator->()
		{
			return &(_node->_data);
		}
		bool operator==(const self& other)
		{
			return _node == other._node;
		}
		bool operator!=(const self& other)
		{
			return _node != other._node;
		}
		/*成员变量*/
		Node* _node;
	};

	template <typename K, typename T, typename KeyOfT>
	class RBTree
	{
		typedef RBTreeNode<T> Node;
	public:
		//默认成员函数
		RBTree()
			:_root(nullptr)
			, _header()
			, _size(0)
		{}
		~RBTree()
		{
			clear();
		}
		//迭代器相关
		typedef __TreeIterator<T, T&, T*> iterator;
		typedef __TreeIterator<T, const T&, const T*> const_iterator;
		iterator begin()
		{
			return _header._left;
		}
		iterator end()
		{
			return &_header;
		}
		const_iterator begin() const
		{
			return _root;
		}
		const_iterator end() const
		{
			return &_header;
		}
		//旋转相关
		void RotateL(Node* parent)
		{
			Node* cur = parent->_right;
			Node* grandparent = parent->_parent;
			/*修改链接关系*/
			//grandparent
			if (parent == _root)
			{
				_root = cur;
			}
			else
			{
				if (grandparent->_left == parent)
				{
					grandparent->_left = cur;
				}
				else
				{
					grandparent->_right = cur;
				}
			}
			//cur左子树头节点
			if (cur->_left != nullptr)
			{
				cur->_left->_parent = parent;
			}
			//parent
			parent->_parent = cur;
			parent->_right = cur->_left;
			//cur
			cur->_left = parent;
			cur->_parent = grandparent;
		}
		void RotateR(Node* parent)
		{
			Node* cur = parent->_left;
			Node* grandparent = parent->_parent;
			/*修改链接关系*/
			//grandparent
			if (parent == _root)
			{
				_root = cur;
			}
			else
			{
				if (grandparent->_left == parent)
				{
					grandparent->_left = cur;
				}
				else
				{
					grandparent->_right = cur;
				}
			}
			//cur右子树头节点
			if (cur->_right != nullptr)
			{
				cur->_right->_parent = parent;
			}
			//parent
			parent->_parent = cur;
			parent->_left = cur->_right;
			//cur
			cur->_parent = grandparent;
			cur->_right = parent;
		}
		void RotateLR(Node* parent)
		{
			Node* cur = parent->_left;
			RotateL(cur);
			RotateR(parent);
		}
		void RotateRL(Node* parent)
		{
			Node* cur = parent->_right;
			RotateR(cur);
			RotateL(parent);
		}
		//插入
		pair<iterator, bool> Insert(const T& data)
		{
			HeaderFadeAway();
			if (_root == nullptr)
			{
				_root = new Node(data);
				_root->_col = BLACK;
				_size++;
				HeaderComeBack();
				return make_pair(_root, true);
			}
			Node* cur = _root;
			Node* parent = nullptr;
			KeyOfT kot;
			while (cur != nullptr)
			{
				if (kot(data) < kot(cur->_data))
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (kot(data) > kot(cur->_data))
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					HeaderComeBack();
					return make_pair(cur, false);
				}
			}
			Node* newnode = new Node(data);
			cur = newnode;
			if (kot(data) < kot(parent->_data))
			{
				newnode->_parent = parent;
				parent->_left = newnode;
			}
			else if (kot(data) > kot(parent->_data))
			{
				newnode->_parent = parent;
				parent->_right = newnode;
			}

			while (parent != nullptr)
			{
				Node* grandparent = parent->_parent;
				if (grandparent == nullptr)
				{
					parent->_col = BLACK;
					_root = parent;
					break;
				}
				else if (parent->_col == BLACK)
				{
					break;
				}
				else if (parent->_col == RED)
				{
					if (grandparent->_left == parent && grandparent->_right == nullptr)  // 1
					{
						if (parent->_left == cur)
						{
							RotateR(grandparent);
							parent->_col = RED;
							grandparent->_col = BLACK;
							cur->_col = BLACK;

							cur = parent;
							parent = parent->_parent;
						}
						else
						{
							RotateLR(grandparent);
							cur->_col = RED;
							grandparent->_col = BLACK;
							parent->_col = BLACK;

							parent = cur->_parent;
						}
					}
					else if (grandparent->_right == parent && grandparent->_left == nullptr) // 1
					{
						if (parent->_left == cur)
						{
							RotateRL(grandparent);
							cur->_col = RED;
							grandparent->_col = BLACK;
							parent->_col = BLACK;

							parent = cur->_parent;
						}
						else
						{
							RotateL(grandparent);
							parent->_col = RED;
							grandparent->_col = BLACK;
							cur->_col = BLACK;

							cur = parent;
							parent = parent->_parent;
						}
					}
					else if (grandparent->_left->_col == RED && grandparent->_right->_col == RED)  // 1 
					{
						grandparent->_col = RED;
						grandparent->_left->_col = BLACK;
						grandparent->_right->_col = BLACK;

						cur = grandparent;
						parent = grandparent->_parent;
					}
					else if (grandparent->_left == parent && grandparent->_right->_col == BLACK)
					{
						if (parent->_left == cur)
						{
							RotateR(grandparent);
							parent->_col = BLACK;
							grandparent->_col = RED;
						}
						else
						{
							RotateLR(grandparent);
							cur->_col = BLACK;
							grandparent->_col = RED;
						}
						break;
					}
					else if (grandparent->_right == parent && grandparent->_left->_col == BLACK)
					{
						if (parent->_left == cur)
						{
							RotateRL(grandparent);
							cur->_col = BLACK;
							grandparent->_col = RED;
						}
						else
						{
							RotateL(grandparent);
							parent->_col = BLACK;
							grandparent->_col = RED;
						}
						break;
					}
				}
			}
			if (_root->_col == RED)
			{
				_root->_col = BLACK;
			}
			_size++;
			HeaderComeBack();
			return make_pair(newnode, true);
		}
		//Header在插入前后的变化
		void HeaderFadeAway()
		{
			if (_header._left != nullptr)
			{
				(_header._left)->_left = nullptr;
			}
			if (_header._right != nullptr)
			{
				(_header._right)->_right = nullptr;
			}
			_header._left = nullptr;
			_header._right = nullptr;
		}
		void HeaderComeBack()
		{
			if (_root == nullptr)
			{
				_header._left = nullptr;
				_header._right = nullptr;
			}
			else
			{
				Node* leftmin = _root;
				Node* rightmax = _root;
				while (leftmin->_left != nullptr)
				{
					leftmin = leftmin->_left;
				}
				while (rightmax->_right != nullptr)
				{
					rightmax = rightmax->_right;
				}
				_header._left = leftmin;
				_header._right = rightmax;
				leftmin->_left = &_header;
				rightmax->_right = &_header;
			}
		}
		//查找
		iterator Find(const K& key)
		{
			if (empty())
			{
				return end();
			}
			else
			{
				KeyOfT kot;
				Node* cur = _root;
				while (cur != nullptr && cur != &_header)
				{
					if (kot(cur->_data) == key)
					{
						return cur;
					}
					else if (kot(cur->_data) > key)
					{
						cur = cur->_left;
					}
					else if (kot(cur->_data) < key)
					{
						cur = cur->_right;
					}
				}
				return end();
			}
		}
		//其他
		size_t size() const
		{
			return _size;
		}
		bool empty() const
		{
			return _size == 0;
		}
		void clear()
		{
			_clear(_root);
		}
	private:
		void _clear(Node* root)
		{
			if (root == nullptr || root == &_header)
			{
				return;
			}
			_clear(root->_left);
			_clear(root->_right);
			delete root;
			_size--;
			_root = nullptr;
			_header._left = _header._right = nullptr;
		}
		Node* _root;
		Node _header;
		size_t _size;
	};
}
/*MyMap.h*/
#pragma once
#include "RBTree.h"

namespace sjy
{
	template <typename K, typename V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		//迭代器相关
		typename typedef RBTree<K, pair<K, V>, MapKeyOfT>::iterator iterator;
		typename typedef RBTree<K, pair<K, V>, MapKeyOfT>::const_iterator const_iterator;
		iterator begin()
		{
			return _tree.begin();
		}
		iterator end()
		{
			return _tree.end();
		}
		const_iterator begin() const
		{
			return _tree.begin();
		}
		const_iterator end() const
		{
			return _tree.end();
		}
		//插入
		pair<iterator, bool> Insert(const pair<K, V>& kv)
		{
			return _tree.Insert(kv);
		}
		//查找
		iterator Find(const K& key)
		{
			return _tree.Find(key);
		}
		//其他
		size_t size() const
		{
			return _tree.size();
		}
		bool empty() const
		{
			return _tree.empty();
		}
		void clear()
		{
			_tree.clear();
		}
		//Map专属
		V& operator[](const K& key)
		{
			iterator it = Find(key);
			if (it == end())
			{
				return (*(Insert(make_pair(key, V())).first)).second;
			}
			else
			{
				return (*it).second;
			}
		}
	private:
		RBTree<K, pair<K, V>, MapKeyOfT> _tree;
	};
}

你可能感兴趣的:(C+,+,算法,c++)