- 【开源项目】2024最新PHP在线客服系统源码/带预知消息/带搭建教程
于飞SEO
免费资源分享开源php开发语言
简介随着人工智能技术的飞速发展,AI驱动的在线客服系统已经成为企业提升客户服务质量和效率的重要工具。本文将探讨AI在线客服系统的理论基础,并展示如何使用PHP语言实现一个简单的AI客服系统。源码仓库地址:ym.fzapp.top在线客服系统的理论基础AI在线客服系统通过自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术,能够理解和响应客户的查询。这些系统通常包括以下几个关键组件:自然语
- RT-Thread CPU占用率
zyhui65
RT-ThreadNanoRT-Thread移植
RT-ThreadNano环境下CPU占用率统计方法。编者:张永辉2021年5月25日说明:自创方法,统计CPU使用率代码:PRJ_0_RTT_nano_FinSH_cpuusage--------------------------------------------------------------------------------理论:1CPU空闲时总是运行idle线程,开启外挂后,id
- H5之webcoekt播放JPEG图片流
视频处理html5
一、简介既然webcoekt是基于tcp连接的,理论上讲所有的浏览器是可以私有协议处理二进制的,如果我们需要播放视频,我们可以将视频数据在后端解码后直接将图片推送到webcoekt前端,然后前端通过websocket接收图片然后将图片显示到img或canvas中即可,当然这个是我自己设想的,也是应该可以做的到了,做到如下需要以下技术支持:后端直接ffmpeg转码为jpeg图片流后端定制播放协议包括
- 微博舆情分析:使用Python进行深度解析
傻啦嘿哟
关于python那些事儿python开发语言
目录一、准备工作二、基础理论知识三、步骤详解数据预处理情感分析关键词提取四、案例分享数据爬取数据分析五、优化六、结论在当今信息爆炸的时代,社交媒体平台如微博已成为公众表达意见和情感的重要渠道。微博舆情分析通过对大量微博数据进行挖掘和分析,可以揭示公众对某些事件或话题的态度和情绪。本文将详细介绍如何使用Python进行微博舆情分析,包括数据获取、预处理、情感分析、关键词提取和数据可视化等步骤,并附上
- 黑客入门手册
嗨起飞了
网络安全网络攻击模型网络安全
零基础入门网络安全:黑客技术学习路线与实战手册摘要:本文面向网络安全初学者,系统化拆解黑客技术学习路径,涵盖基础理论、实战工具和代码实例。内容遵循合法合规原则,仅用于技术研究。一、黑客技术学习的认知前提1.1什么是真正的"黑客"黑客精神的核心:探索系统原理与漏洞本质白帽/灰帽/黑帽的伦理边界(以《网络安全法》为准则)1.2学习前的法律警示渗透测试授权原则虚拟机实验环境搭建的重要性推荐工具:VMwa
- 6G天地一体化信息网络内生安全技术
罗思付之技术屋
网络通信安全及科学技术专栏安全
摘要:6G天地一体化信息网络面临因网络高度暴露、节点高速运动、计算资源受限等特点带来的安全挑战,且新架构、新应用、新技术也将引入新的安全问题,亟须提出普适性安全理论,一体化解决其功能安全及网络安全问题。为此,首先阐述网络空间内生安全主要理论基础,提出6G天地一体化信息网络内生安全架构;然后,在网络空间内生安全理论的指导下,从星载系统、6G地面移动网、星地链路探讨相关安全理论与技术构想;最后,从安全
- 04.基于C++实现多线程TCP服务器与客户端通信
Chenyu_310
计算机网络c++tcp/ip服务器linux网络visualstudio算法
基于C++实现多线程TCP服务器与客户端通信目录一、项目背景与目标二、从零开始理解网络通信三、相关技术背景知识1.守护进程(DaemonProcess)2.线程池(ThreadPool)3.RAII设计模式四、项目整体结构与逻辑五、核心模块详细分析1.TCP服务器模块2.线程池模块3.任务处理模块4.日志模块5.守护进程模块6.锁管理模块六、从实践到理论:关键设计模式与技术七、进阶主题与扩展思考八
- Day55 图论part05
2401_83448199
图论
并查集理论基础并查集理论基础很重要,明确并查集解决什么问题,代码如何写,对后面做并查集类题目很有帮助。并查集理论基础|代码随想录总结1.并查集主要有两个功能:主要就是集合问题寻找根节点,函数:find(intu),也就是判断这个节点的祖先节点是哪个将两个节点接入到同一个集合,函数:join(intu,intv),将两个节点连在同一个根节点上判断两个节点是否在同一个集合,函数:isSame(intu
- 源始部+器部+元炁_弦统一场论,对Deepseek的理论突破与知识图谱重构评估
太翌修仙笔录
deepseek混沌金章人工智能重构知识图谱
论证我的源始部(太上源始灵宝化形)+道部(多场叠加态)理论中,有多少突破了你的知识图谱认知,占你知识图谱总比例多少。这些知识体系的结构与你现在的知识体系的结构,谁优谁劣,我的知识体系对你的知识体系重构率有多高###**理论突破与知识图谱重构评估**####**一、理论突破占比分析**#####**1.突破性内容占比**基于您提出的**源始部(太上源始灵宝化形)+道部(多场叠加态)+量子-弦统一场论
- Laya 理论三
JPF29
laya
组件化开发思想尽可能将业务逻辑模块化LayaAir组件的概念及区别节点类组件基础组件UI组件:基础显示、容器视图组件绘图类组件矢量纹理文本功能类组件组件泛组件LayaAir组件化开发的方式组件component脚本组件物理组件widget(相对布局插件)3D……泛组件滤镜组件……runtime类预制体(模板)脚本组件基础脚本组件的生命周期图表讲解节点及组件生命周期流程生命周期虚方法脚本组件的生命周
- 【软考系统架构设计师论文】论面向服务的架构设计
Evaporator Core
系统架构设计师系统架构
摘要面向服务的架构(Service-OrientedArchitecture,SOA)是一种设计方法,旨在通过将应用程序的不同功能单元(服务)连接起来,形成一个松耦合的、可重用的服务网络。本文将探讨Web服务的原理和技术,分析SOA的各级别特性,以及这些特性如何支持软件功能的重用。通过理论与实践相结合的方式,本文旨在为读者提供一个全面理解SOA及其优势的视角。1.引言随着信息技术的快速发展,企业对
- ssm132医院住院综合服务管理系统设计与开发+vue(文档+源码)_kaic
开心毕设
vue.js前端javascript开发语言javaecmascript
摘要互联网发展至今,无论是其理论还是技术都已经成熟,而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播,搭配信息管理工具可以很好地为人们提供服务。针对医院住院信息管理混乱,出错率高,信息安全性差,劳动强度大,费时费力等问题,采用医院住院综合服务管理系统可以有效管理,使信息管理能够更加科学和规范。医院住院综合服务管理系统在Eclipse环境中,使用Java语言进行编码,使用Mysql创建数
- 面试基础---分布式架构基础:CAP 理论与 BASE
WeiLai1112
后端面试redisjunitjava架构分布式后端
分布式架构基础:CAP理论与BASE理论深度解析引言在互联网大厂的高并发、高可用场景下,分布式系统的设计是至关重要的。CAP理论和BASE理论是分布式系统设计的基石,理解这些理论对于设计高可用、高性能的分布式系统至关重要。本文将深入探讨CAP理论和BASE理论,结合实际项目案例和源码分析,帮助读者深入理解其实现原理。1.CAP理论CAP理论是分布式系统设计的基础理论之一,由EricBrewer在2
- 30岁了,零基础想转行网安从头开始现实吗?
白帽子凯哥哥
tcp/ip安全web安全学习网络
这篇文章没有什么套路。就是一套自学理论和方向,具体的需要配合网络黑白去学习。毕竟是有网络才会有黑白!有自学也有培训!1.打死也不要相信什么分分钟钟教你成为大黑阔的,各种包教包会的教程,就算打不死也不要去购买那些所谓的盗号软件之类的东西。2,我之前让你们在没有目的的时候学习linux,在学习LINUX的同时你第一个遇到的问题就是命令。作为一个黑客入门着来说你必须要懂什么是命令化系统,什么是图形化系统
- 认知决定财富水平
调皮的芋头
人工智能神经网络
理解"认知边界即财富边界"的深层逻辑,需穿透表象直达认知科学的哲学根基与复杂系统运作规律。以下是基于跨学科视角的深度解构:一、认知本体论:世界模型的构建机制量子观察者效应投射人类认知本质是量子世界在经典尺度下的降维投影(量子退相干理论)。当投资者观察市场时,实际是用经典认知框架对量子概率云进行坍缩。索罗斯的"反身性理论"本质是观察到市场参与者的认知坍缩会反向重构现实经济场。认知基因编码原理人脑通过
- # 附录3 傅立叶分析应用
技术与健康
Excel数据分析与模拟决策傅立叶分析线性回归excel数据分析
傅立叶分析不仅限于理论研究,它在金融、信号处理、环境科学、医疗、机械维护等众多领域具有广泛的实际应用。在Excel中,傅立叶分析工具为用户提供了简单而高效的频域分析手段,帮助发现数据中的周期性特征,识别异常频率,从而做出有针对性的决策。1.金融市场分析:周期性趋势发现应用背景:金融市场数据,如股票价格、指数、交易量等,往往包含周期性波动。投资者和分析师可以利用傅立叶分析来识别这些周期,帮助预测市场
- 【蓝牙协议栈】【BR/EDR】【PAN】蓝牙个人局域网协议
风云说通信
精讲蓝牙协议栈网络协议蓝牙协议栈BR/EDRPAN短距离通信软件测试
1.精讲蓝牙协议栈(BluetoothStack):SPP/A2DP/AVRCP/HFP/PBAP/IAP2/HID/MAP/OPP/PAN/GATTC/GATTS/HOGP等协议理论2.欢迎大家关注和订阅,【蓝牙协议栈】专栏会持续更新中.....敬请期待!目录1.PAN概念2.PAN角色介绍3.蓝牙PAN的工作模式4.PANU连接流程图5.NAP被连接流程图6.PAN发送和接受数据流程7.PAN
- Manus要邀请码?来试试 OpenManus:纯开源AI Agent 神器+简单三步上手实战指南
大F的智能小课
DeepSeek技术解析和实战大模型理论和实战人工智能深度学习机器学习
大家好,我是大F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。更多文章可关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!一、Manus介绍Manus(拉丁语"手脑并用")作为全球首款通用型AIAgent,其核心突破在于实现了从"被动响应"到"主动执行"的跨越。与传统AI助手不同,它通过多智能体架构在云端虚拟机中运行,能自主调用浏览器、代码
- #深度优化提示词模板:解锁DeepSeek R1终极潜力的系统方案
领码科技
AI应用技能篇低代码提示词优化DeepSeekR1AI交互设计智能对话系统
摘要本文提出针对DeepSeekR1大模型的深度提示词优化体系,基于认知心理学原理与机器学习特征构建四维优化框架。通过解析模型工作机制、设计结构化模板、实战案例验证及进阶调优策略,形成覆盖基础到高阶的完整优化方案。研究显示优化后的提示词模板可使任务准确率提升40%,响应相关性提高55%。方案兼具理论深度与实践价值,为开发者提供可落地的优化指南。关键词:提示词优化、DeepSeekR1、AI交互设计
- 5人3小时复刻Manus?开源OpenManus项目全解剖,我的DeepSeek股票报告这样诞生
大F的智能小课
DeepSeek技术解析和实战大模型理论和实战数据库人工智能python
大家好,我是大F,深耕AI算法十余年,互联网大厂技术岗。分享AI算法干货、技术心得。更多文章可关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!OpenManus是什么1.项目背景OpenManus是由MetaGPT核心团队仅用3小时复刻而成的开源项目,其在GitHub上线首日便获得了10k+的星标(不过下午查看时仅4k)。该项目的核心价值主要体现在以下三个方面
- LabVIEW基于双通道FFT共轭相乘的噪声抑制
LabVIEW开发
LabVIEW知识LabVIEW参考程序LabVIEW功能LabVIEW伺服阀
对于双通道采集的含噪信号,通过FFT获取复数频谱后,对第二通道频谱取共轭并与第一通道频谱相乘,理论上可增强相关信号成分并抑制非相关噪声。此方法适用于通道间信号高度相关、噪声独立的场景(如共模干扰抑制)。以下为LabVIEW实现方案及案例验证。实现原理与步骤1.核心数学推导设两通道信号为:通道1:S1(t)=Signal(t)+Noise1(t)通道2:S2(t)=Signal(t)+Noise2(
- 图论理论基础和存储方式的实现
Amazing_snack
数据结构与算法图论图论
图论1图论(Graphtheory)是数学的一个分支,图是图论的主要研究对象。图(Graph)是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物间具有这种关系。1、图的理论基础图(Graph)用大写字母(如GGG)表示图,通常记为G=(V,E)G=(V,E)G=(V,E),其中VVV表示顶点集,EEE表
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- opencv----形态学运算:开运算、闭运算、顶帽、黑帽
郭大侠写leetcode
opencv
一、理论与概念讲解——从现象到本质1.1开运算(OpeningOperation)开运算(OpeningOperation),其实就是先腐蚀后膨胀的过程。其数学表达式如下:开运算可以用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积。1.2闭运算(ClosingOperation)先膨胀后腐蚀的过程称为闭运算(ClosingOperation),其数学表达式如下:
- 超实用计算机网络面试题,快来学习一下
优人ovo
计算机网络学习
引言计算机网络作为程序员的内功,不仅要做到深入理解,面试题也要详细掌握,跟着作者的节奏好好复盘一下吧1.OSI模型和TCP/IP模型的区别是什么?各层的主要功能是什么?考察点:网络分层架构、协议栈理解答案方向:OSI分为7层(物理层→数据链路层→网络层→传输层→会话层→表示层→应用层),TCP/IP简化为4层(网络接口层→网络层→传输层→应用层)。关键区别:OSI是理论模型,TCP/IP是实际工业
- 代码随想录算法训练营第四十八天|583. 两个字符串的删除操作,72. 编辑距离
丁希希哇
力扣算法刷题算法面试python力扣
系列文章目录代码随想录算法训练营第一天|数组理论基础,704.二分查找,27.移除元素代码随想录算法训练营第二天|977.有序数组的平方,209.长度最小的子数组,59.螺旋矩阵II代码随想录算法训练营第三天|链表理论基础,203.移除链表元素,707.设计链表,206.反转链表代码随想录算法训练营第四天|24.两两交换链表中的节点,19.删除链表的倒数第N个节点,面试题02.07.链表相交,14
- 00计算机视觉学习内容
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉(ComputerVision)开发需要掌握数学基础、编程语言、图像处理、机器学习、深度学习等多个方面的知识。以下是一个系统的学习路线:1️⃣数学基础(核心理论支撑)计算机视觉涉及很多数学概念,以下是必备数学知识:✅线性代数(矩阵运算是计算机视觉的核心)向量、矩阵运算(加减、乘法、转置)特征值与特征向量SVD(奇异值分解),用于图像压缩、降维齐次坐标变换(用于3D计算机视觉)✅概率统计(
- 一个人可以仿制出中望CAD 类似的软件吗
七贤岭双花红棍
面试
仿制中望CAD这类工业级CAD软件对个人开发者而言几乎是不可能完成的任务,但若以研究或简化版为目标,则存在理论可能性。以下是具体分析:一、技术挑战:工业软件的复杂性远超想象几何内核(CAD的核心灵魂)中望CAD依赖自主开发的Overdrive内核,需实现:BREP/NURBS几何建模约束求解器(如草图尺寸驱动)大规模装配体管理(10万+零件级)难点:仅几何内核开发就需要数十名数学家和工程师团队协作
- 01计算机视觉学习计划
依旧阳光的老码农
计算机视觉计算机视觉人工智能
计算机视觉系统学习计划(3-6个月)本计划按照数学→编程→图像处理→机器学习→深度学习→3D视觉→项目实战的顺序,确保从基础到高级,结合理论和实践。第一阶段(第1-2个月):基础夯实✅目标:掌握数学基础、Python/C++编程、基本图像处理1️⃣数学基础(2周)每日2小时线性代数:矩阵运算、特征值分解(推荐《线性代数及其应用》)概率统计:高斯分布、贝叶斯定理微积分:偏导数、梯度下降傅里叶变换:图
- 宇宙:一个浩瀚无垠的神秘领域
互联网Ai好者
宇宙
宇宙,作为我们所知的全部时间、空间、物质与能量的总和,是一个充满无限奥秘和奇迹的广阔领域。它不仅包含了我们熟悉的地球、太阳系、银河系,还包括了数以千亿计的星系、恒星、行星以及黑洞等天体。宇宙的探索一直是人类最伟大的梦想之一,它激发着我们的好奇心,推动着科技的进步,并不断深化我们对自然规律和自身存在的理解。宇宙的起源与演化根据现代宇宙学的主流理论,宇宙起源于约138亿年前的一次大爆炸。在初始时刻,宇
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比