给定一个 n×mn×m 的二维整数数组,用来表示一个迷宫,数组中只包含 00 或 11,其中 00 表示可以走的路,11 表示不可通过的墙壁。
最初,有一个人位于左上角 (1,1)(1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角 (n,m)(n,m) 处,至少需要移动多少次。
数据保证 (1,1)(1,1) 处和 (n,m)(n,m) 处的数字为 00,且一定至少存在一条通路。
输入格式
第一行包含两个整数 nn 和 mm。
接下来 nn 行,每行包含 mm 个整数(00 或 11),表示完整的二维数组迷宫。
输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1≤n,m≤1001≤n,m≤100
输入样例:
5 5 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0
输出样例:
8
#include
using namespace std;
queue > q;
const int N=110;
int mp[N][N];
int d[N][N];
int n,m;
int bfs()
{
memset(d,-1,sizeof(d));
d[1][1]=0;
q.push({1,1});
int dx[]={-1,0,0,1};
int dy[]={0,1,-1,0};
while(!q.empty())
{
for(int i=0;i<=3;i++)
{
auto t=q.front();
int x=t.first+dx[i],y=t.second+dy[i];
if(x>=1&&x<=n&&y>=1&&y<=m&&d[x][y]==-1&&mp[x][y]==0)
{
mp[x][y]=0;
d[x][y]=d[t.first][t.second]+1;
q.push({x,y});
}
}
q.pop();
}
return d[n][m];
}
int main()
{
int i,j;
scanf("%d %d",&n,&m);
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
scanf("%d",&mp[i][j]);
}
}
printf("%d",bfs());
return 0;
}
在一个 3×33×3 的网格中,1∼81∼8 这 88 个数字和一个
x
恰好不重不漏地分布在这 3×33×3 的网格中。例如:
1 2 3 x 4 6 7 5 8
在游戏过程中,可以把
x
与其上、下、左、右四个方向之一的数字交换(如果存在)。我们的目的是通过交换,使得网格变为如下排列(称为正确排列):
1 2 3 4 5 6 7 8 x
例如,示例中图形就可以通过让
x
先后与右、下、右三个方向的数字交换成功得到正确排列。交换过程如下:
1 2 3 1 2 3 1 2 3 1 2 3 x 4 6 4 x 6 4 5 6 4 5 6 7 5 8 7 5 8 7 x 8 7 8 x
现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。
输入格式
输入占一行,将 3×33×3 的初始网格描绘出来。
例如,如果初始网格如下所示:
1 2 3 x 4 6 7 5 8
则输入为:
1 2 3 x 4 6 7 5 8
输出格式
输出占一行,包含一个整数,表示最少交换次数。
如果不存在解决方案,则输出 −1−1。
输入样例:
2 3 4 1 5 x 7 6 8
输出样例
19
#include
#include
#include
#include
using namespace std;
int bfs(string state)
{
queue q;
unordered_map d;
q.push(state);
d[state] = 0;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
string end = "12345678x";
while (q.size())
{
auto t = q.front();
q.pop();
if (t == end) return d[t];
int distance = d[t];
int k = t.find('x');
int x = k / 3, y = k % 3;
for (int i = 0; i < 4; i ++ )
{
int a = x + dx[i], b = y + dy[i];
if (a >= 0 && a < 3 && b >= 0 && b < 3)
{
swap(t[a * 3 + b], t[k]);
if (!d.count(t))
{
d[t] = distance + 1;
q.push(t);
}
swap(t[a * 3 + b], t[k]);
}
}
}
return -1;
}
int main()
{
char s[2];
string state;
for (int i = 0; i < 9; i ++ )
{
cin >> s;
state += *s;
}
cout << bfs(state) << endl;
return 0;
}