- AI人工智能领域深度学习的跨模态检索技术
AI学长带你学AI
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习ai
AI人工智能领域深度学习的跨模态检索技术关键词:跨模态检索、深度学习、多模态学习、特征提取、相似度计算、注意力机制、Transformer摘要:本文深入探讨了AI领域中基于深度学习的跨模态检索技术。我们将从基础概念出发,详细分析跨模态检索的核心算法原理、数学模型和实际应用。文章包含完整的Python实现示例,展示如何构建一个跨模态检索系统,并讨论当前的技术挑战和未来发展方向。通过本文,读者将全面理
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- Python程序设计 第6章:函数和函数式编程
若北辰
Python程序设计python开发语言
Python程序设计Python是全球范围内最受欢迎的编程语言之一,学好Python将对个人职业生涯产生很大的助力,Python在机器学习、深度学习、数据挖掘等领域应用极为广泛。在数据科学家/数据分析师、人工智能工程师、网络安全工程师、软件工程师/全栈工程师、自动化测试工程师等岗位,年入50万,很普遍,学好Python,高薪就业不是问题,因此推出Python程序设计系列文章:Python程序设计第
- AI人工智能与OpenCV:实现智能图像编辑功能
AI智能探索者
AIAgent智能体开发实战人工智能opencv计算机视觉ai
AI人工智能与OpenCV:实现智能图像编辑功能关键词:人工智能、OpenCV、图像处理、计算机视觉、深度学习、智能编辑、图像增强摘要:本文深入探讨如何结合人工智能(AI)和OpenCV实现智能图像编辑功能。我们将从基础概念出发,详细介绍核心算法原理,展示实际代码实现,并分析典型应用场景。文章将涵盖从传统图像处理技术到深度学习方法的演进,重点讲解如何利用OpenCV和AI模型实现自动化的图像增强、
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- AI取代人类?不,真正淘汰你的是“不会用AI”的人
zhuzhi
人工智能chatgpt
“AI会让人类失业吗?”——这个问题在过去几年被反复讨论。ChatGPT的爆火、MidJourney颠覆设计行业、自动驾驶取代司机……似乎AI正在“抢走”人类的工作。但真相是:AI不会取代所有人,但它会取代那些不会使用AI的人。未来10年,职场竞争不再是“人类VSAI”,而是**“会用AI的人”VS“不用AI的人”**。就像20年前互联网刚普及时,会用搜索引擎的人比只会翻书的人效率高10倍;今天,
- 本地部署ComfyUI,使用FLUX模型相关的配置以及软链接的使用
九河_
linuxComfyUIflux
记录本地部署ComfyUI时,使用FLUX模型相关的配置,包括FLUX模型的下载位置和使用软链接。参考资料:Flux.1ComfyUI对应模型安装及教程指南上面的网站还讲了非常多的ComfyUI以及其他模型,非常好的资料。FLUX.1dev下载网站:black-forest-labsflux1-dev.safetensors是UNET模型,需要放在ComfyUI/models/unet目录下如果从
- 贝叶斯网络与深度学习的结合:图像识别和分类
AI天才研究院
AI人工智能与大数据计算AI大模型企业级应用开发实战自然语言处理人工智能语言模型编程实践开发语言架构设计
本文我将为您撰写一篇关于"贝叶斯网络与深度学习的结合:图像识别和分类"的技术博客文章。这篇文章将深入探讨贝叶斯网络和深度学习在图像识别和分类领域的结合应用。我会遵循您提供的要求和结构模板,确保文章内容全面、深入且易于理解。让我们开始吧。贝叶斯网络与深度学习的结合:图像识别和分类关键词:贝叶斯网络、深度学习、图像识别、图像分类、概率推理、卷积神经网络、不确定性建模文章目录贝叶斯网络与深度学习的结合:
- 对话式AI助手的巅峰对决:ChatGPT与文心一言的实用价值探讨
酷钉
chatgpt人工智能
随着人工智能技术的发展,对话式AI助手逐渐成为了人们生活中的一部分。其中,ChatGPT和文心一言更是备受关注的两款对话式AI助手。本文将探讨这两款AI助手的实用价值,并通过案例和数据的方式进行分析。一、ChatGPT的实用价值跨语言交流ChatGPT是一款能够进行跨语言交流的对话式AI助手。据统计,ChatGPT支持的语言数量超过100种,用户可以通过它轻松地与不同国家和地区的人进行交流。例如,
- Halcon 初步了解
科学的发展-只不过是读大自然写的代码
图形编程c#视觉处理Halcon
1.Halcon概述Halcon是德国MVTec公司开发的一套完善的机器视觉算法包,也是一款功能强大的视觉处理软件,为工业自动化领域提供了全面的解决方案。它拥有应用广泛的机器视觉集成开发环境,提供了一套丰富的图像处理和机器视觉算法,可以在各种工业应用中进行图像分析、目标检测、测量、定位、识别等任务。Halcon的核心功能包括图像处理、特征提取与匹配、3D视觉、深度学习、条码识别、OCR识别以及视觉
- 如何在pytorch中使用tqdm:优雅实现训练进度监控
Ven%
简单入门pytorchpytorch人工智能python
文章目录为什么需要进度条?tqdm简介基础用法示例深度学习中的实战应用1.数据加载进度监控2.训练循环增强版3.验证阶段集成高级技巧与最佳实践1.自定义进度条样式2.嵌套进度条(多任务)3.分布式训练支持4.与日志系统集成性能优化建议完整训练流程示例常见问题解决方案总结掌握训练进度监控是深度学习工程师的基本功。本文将带你从零开始,深入探索如何用tqdm为深度学习训练添加专业级进度条。为什么需要进度
- Python通过字符串调用函数_python 面向对象 根据字符串调动对应函数(1)
m0_61418142
python数据库linux
textprocess(file,language)但是textprocess(file=‘data.txt’,language=‘english’)language(text)TypeError:‘str’objectisnotcallable百度谷歌一番,我查到以下几种方式####1-字典最简单,易上手的方式,使用字典配对。defchinese(text):print(‘jieba分词’)de
- Dimba: Transformer-Mamba Diffusion Models————3 Methodology
图解图片中的每个模块详解1.文本输入(Text)描述:输入的文本描述了一个具有具体特征的场景。功能:提供关于要生成图像的详细信息。2.T5模型(TexttoFeature)描述:使用T5模型将文本转换为特征向量。功能:提取文本中的语义信息,为后续的图像生成提供条件。3.图像输入(Image)描述:输入图像通过变分自编码器(VAE)编码器处理。功能:将图像转换为潜在表示,用于添加噪声并进行扩散过程。
- 【Python】Hydra 用法详解
行码棋
#Pythonpython开发语言
Hydra官方文档Hydra(Python配置管理工具)1.引言在机器学习、深度学习和软件开发中,管理复杂的配置是一个常见的挑战。Hydra是一个强大的Python库,允许开发者轻松地管理和组织配置文件,支持动态参数覆盖、多层次配置和可组合配置等特性。2.安装HydraHydra可以通过pip直接安装:pipinstallhydra-core安装完成后,你可以使用hydra进行配置管理。3.基础用
- onnx模型部署 python_深度学习模型转换与部署那些事(含ONNX格式详细分析)
weixin_39759270
onnx模型部署python
背景深度学习模型在训练完成之后,部署并应用在生产环境的这一步至关重要,毕竟训练出来的模型不能只接受一些公开数据集和榜单的检验,还需要在真正的业务场景下创造价值,不能只是为了PR而躺在实验机器上在现有条件下,一般涉及到模型的部署就要涉及到模型的转换,而转换的过程也是随着对应平台的不同而不同,一般工程师接触到的平台分为GPU云平台、手机和其他嵌入式设备对于GPU云平台来说,在上面部署本应该是最轻松的事
- 从零开始理解Transformer模型:架构与应用
淮橘√
transformer深度学习人工智能
引言近年来,Transformer模型席卷了自然语言处理(NLP)领域,成为了深度学习中的明星架构。从Google提出的《AttentionisAllYouNeed》论文到ChatGPT、BERT等模型的广泛应用,Transformer以其强大的性能和灵活性改变了我们对序列建模的认知。本文将从零开始,深入浅出地解析Transformer的架构原理、核心组件以及实际应用场景,并提供一个简单的代码示例
- webstorm中element-ui标签无法跳转源码
Hong.1948
webstormuiide
原本用的webstorm2019,之前的项目开发时切实体验过跳转element-ui源码,觉得很香。更新了webstorm至2024,居然不行了,能弹出来提示,但就是找不到定义。不知道是不是2024版本的问题,node_moudles不管我是否手动添加exclude,它显示的都是exclude如下图:下列方式都尝试过了,没用:node_moudules设置为notexcludeLanguage&F
- Panda3D实战:从入门到精通
KENYCHEN奉孝
python实践大全python开发语言c++
Panda3D基础实例创建一个简单的Panda3D场景,加载一个模型并显示:fromdirect.showbase.ShowBaseimportShowBaseclassMyApp(ShowBase):def__init__(self):ShowBase.__init__(self)self.scene=self.loader.loadModel("models/environment")self
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)
神经网络15044
深度学习算法神经网络python深度学习django机器学习人工智能算法目标检测
基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)一、系统概述本系统结合YOLOv8目标检测和ResNet50图像分类算法,构建了一个智能线上问诊平台。系统支持用户上传医学影像(皮肤照片/X光片),自动分析并生成诊断报告,同时提供医生审核功能。二、技术栈后端框架:Django4.2数据库:MySQL8.0深度学习:YOLOv8:皮肤病变区域检测ResNet50:肺炎X光
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- 深入理解Tomcat 基本架构
无心水
编程路上tomcat架构java深入理解TomcatServlet容器I/O模型NIO2
TheApacheTomcat®softwareisanopensourceimplementationoftheJavaServlet,JavaServerPages,JavaExpressionLanguageandJavaWebSockettechnologies.TheJavaServlet,JavaServerPages,JavaExpressionLanguageandJavaWebS
- 首次使用“非英伟达”芯片!OpenAI租用谷歌TPU,降低推理计算成本
加百力
科技知识财经研究人工智能chatgpt
OpenAI近期开始租用谷歌TPU芯片,这是该公司首次大规模使用非英伟达芯片。除了OpenAI外、苹果、SafeSuperintelligence和Cohere等公司也一直租用谷歌云的TPU。英伟达的芯片主导地位正被侵蚀,OpenAI租用谷歌TPU,为首次大规模使用“非英伟达”芯片。周六,据媒体报道,作为全球最大的人工智能芯片客户之一,OpenAI近期开始租用谷歌的TPU芯片为ChatGPT等产品
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- 【机器学习&深度学习】本地部署 vs API调用:关键看显存!
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、本地部署VSAPI调用1.模型运行方式2.性能与速度3.成本4.隐私与安全5.何时选择哪种方式?二、为什么推荐本地部署?1️⃣零依赖网络和外部服务,更可靠稳定2️⃣无调用次数限制,更适合高频或批量推理3️⃣避免长期API费用,节省成本4️⃣保护用户隐私和数据安全5️⃣可自定义、深度优化6️⃣加载一次即可复用,低延迟高性能7️⃣离线可用(重要!)三、适合本地部署的情况四、本地部署条件4.1模
- 深度学习 vs 传统机器学习:哪个更适合你的项目?
AI大模型应用之禅
深度学习机器学习人工智能ai
深度学习vs传统机器学习:哪个更适合你的项目?关键词:深度学习、传统机器学习、特征工程、数据量、计算资源、项目选择、算法对比摘要:本文将用"炒菜"和"拼图"等生活案例,从核心原理、适用场景、资源需求等维度对比深度学习与传统机器学习。通过具体代码示例和真实项目场景分析,帮助开发者和企业决策者快速判断:你的项目该选深度学习还是传统机器学习?背景介绍目的和范围随着AI技术普及,"该用深度学习还是传统机器
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen