- ffmpeg 命令转vp9
980205
ffmpeg
mp4转vp9./ffmpeg-itest.mp4-pix_fmtyuv420p10le-c:vlibvpx-vp9-b:v0-crf31-speed1-qualitygood-static-thresh4 -lag-in-frames25 -fwebmout.webmyuv转vp9,需要指定yuv的高宽//转vp9./ffmpeg-pix_fmtyuv420p-s704*576 -i out.y
- 自然语言处理系列四十》条件随机场CRF》CRF开源工具实战
陈敬雷-充电了么-CEO兼CTO
自然语言处理人工智能aipython深度学习机器人机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列四十条件随机场(CRF)开源工具实战新词发现与短语提取总结自然语言处理系列四十条件随机场(CRF)开源工具实战目前条件随机场最流行的开源工具是CRF++。CRF++工具包最早是针对序列数据分析提出的,是一个可用于分词/连续数
- [Python人工智能] 四十二.命名实体识别 (3)基于Bert+BiLSTM-CRF的中文实体识别万字详解(异常解决中)
Eastmount
人工智能pythonbert实体识别bert4keras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现中文命名实体识别研究,构建BiGRU-CRF模型实现。这篇文章将继续以中文语料为主,介绍融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。然而,该代码最终结果有些问题,目前还在解决中,但现阶段方法先作为在线笔记分享出来。基础性文章,希望对您有帮助,如
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
人工智能自然语言处理数据挖掘
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- [Python人工智能] 四十一.命名实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
Eastmount
python人工智能实体识别BiGRU-CRFKeras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现威胁情报实体识别,利用BiLSTM-CRF算法实现对ATT&CK相关的技战术实体进行提取,是安全知识图谱构建的重要支撑。这篇文章将以中文语料为主,介绍中文命名实体识别研究,并构建BiGRU-CRF模型实现。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!由于上一篇文章详细讲解ATT
- 实体命名识别详解(十三)
yousa_
self.add_pred_op()接下来是add_pred_op操作,看字面意思是预测用。defadd_pred_op(self):"""Definesself.labels_predThisopisdefinedonlyinthecasewherewedon'tuseaCRFsinceinthatcasewecanmaketheprediction"inthegraph"(thankstotf
- 军用水壶
彭莫山一束光
《军用水壶》原文链接:https://mp.weixin.qq.com/s/Ep-eVcR-crfdubgMl2grXg刚退役回来,到当地银行办卡,工作人员专门送了一个军用水壶给我,很有纪念意义。这是个老式的军用水壶,虽然说新款的更酷,但我还是更偏爱旧式的。它朴素,看上去有些笨拙,老土,但可爱,坚定,无惧风霜,就像一位可靠的老战友。记得小时候看的老电影《上甘岭》里,它就曾出过场,不知道最近热映的《
- 【2018-10-02】条件随机场
BigBigFlower
条件随机场:给定随机变量x条件下,随机变量y的马尔科夫随机场。设X和Y是随机变量,P(Y|X)是在给定X的条件下Y的条件概率分布,若随机变量Y构成一个由无向图G=(V,E)表示的马尔科夫随机场,即满足马尔科夫性:w~v(与v连接的所有w)线性链条件随机场线性链条件随机场的参数形式:tk边上的特征函数,sl节点上的特征函数条件随机场的概率计算问题前向-后向算法定义前向向量:递推公式:定义后向向量:前
- 传感网应用开发知识点总结
程序小鹿
传感网应用开发(中级)物联网stm32arm网络协议经验分享
传感网应用开发知识点总结1+X职业技能等级证书-传感网应用开发一、数据采集1、模拟量数据采集2、数字量传感器数据采集3、开关量传感器数据采集二、STM32微控制器基本外设应用开发STM32重要知识点总结三、RS-485总线通讯应用RS-485总线重要知识点四、CAN总线通讯应用1.CAN基础知识2.CAN通信帧类型3.CAN控制器与收发器五、基于BasicRf的无线通信应用BasicRf重要知识点
- okuex官方活动声明!
OKUEX
okuex为庆祝用户突破一千万,现推出经纪人活动,个人操作可获得20%手续费,介绍朋友最高可获得手续费60%!官方活动推广码:LCRF8E(此为申请经纪人推广码)参加活动需加客服QQ:547689144必加验证码:888
- [当人工智能遇上安全] 11.威胁情报实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
Eastmount
当人工智能遇上安全人工智能实体识别BiGRU威胁情报Python
您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安
- 机器学习---概率图模型(隐马尔可夫模型、马尔可夫随机场、条件随机场)
三月七꧁ ꧂
机器学习机器学习人工智能
1.隐马尔可夫模型机器学习最重要的任务是根据已观察到的证据(例如训练样本)对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型(probabilisticmodel)提供了一种描述框架,将描述任务归结为计算变量的概率分布,在概率模型中,利用已知的变量推测未知变量的分布称为“推断(inference)”,其核心在于基于可观测的变量推测出未知变量的条件分布。生成式:计算联合分布(,,),判别式:
- 大数据TensorFlow深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统(完整系统源码+PPT+详细开发文档+论文+源码解析)
谁不学习揍谁!
深度学习bertlstm知识图谱人工智能神经网络机器学习
文章目录大数据TensorFlow深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统(完整系统源码+PPT+详细开发文档+论文+源码解析)获取项目资料方式在文章末尾获取项目资料方式在文章末尾一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
汀、人工智能
人工智能知识图谱LSTM分词算法信息抽取词性标注NLP
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- ORACLE拼接字符串
ruleslol
ORACLEoracle数据库
1、可以使用“||”来拼接字符串:selectb.province||'-'||b.city||'-'||b.Addressaslocation_descrFROMelearning.Opt_UseraJOINelearning.Opt_TrainingbONa.Trainingid=b.IdJOINelearning.Core_UserprofileuONa.Userid=u.IdWHEREa.
- 多路径配置问题和ACFS启用原因导致rac二节点不能正常启动
烟雨归来
数据库oracle
二节点启动时,crsd一直不能启动成功,crsctlstatres-t-init查看crsd是offline状态ora.asm1ONLINEONLINErac2Started,STABLEora.cluster_interconnect.haip1ONLINEOFFLINErac2STABLEora.crf1ONLINEONLINErac2STABLEora.crsd1ONLINEOFFLINES
- 汉语言处理包 HanLP v1.3.5,新功能、优化与维护
lanlantian123
HanLPv1.3.5更新内容:大幅优化CRF分词和二阶HMM分词,重构CharacterBasedGenerativeModelSegment自定义词典支持热更新:#563,ngram模型支持热加载:#580新增一个提高用户词典优先级的开关:#633支持98年人民日报的复合词语料格式,如"[中央/n人民/n广播/vn电台/n]nt"开放TextRank关键词提取中的最大迭代次数参数:#577为T
- 【转载】图像分割 DeepLab v2
dopami
https://blog.csdn.net/cv_family_z/article/details/72643479标题:DeepLab:SemanticImageSegmentationwithDeepConvolutionalNets,AtrousConvolution,andFullyConnectedCRFs网站:http://liangchiehchen.com/projects/Dee
- 我们玩游戏,那是因为我们要拯救世界啊
游戏怎么你了
能力越大责任越大昨天的暴雪爸爸更新了一款《守望先锋》——粉红天使的新皮肤,新皮肤售价98人民币已经是《守望先锋》标准版游戏的价格了。抱歉放错图应该是这个不过特别的是暴雪与公益组织BCRF合作,将皮肤的销售收入百分百全部捐赠给了乳腺癌研究机构,用作乳腺癌治愈方法的研究。很酷对不对,为了信仰买买买!!!这不是你们暴雪爸爸第一次这样做了《守望先锋》玩家比较熟悉漓江塔英雄宏宇雕像的故事了。广州工业大学学生
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统
星川皆无恙
机器学习与深度学习知识图谱自然语言处理深度学习大数据知识图谱神经网络机器学习bertlstm
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- bert+crf可以做NER,那么为什么还有bert+bi-lstm+crf ?
Maann
NLPbertlstm深度学习
1.关于BERT做NER要不要加CRF层?关于BERT做NER,最简单的方式就是序列标注方法,以BERT得到token的embedding,后接softmax直接输出预测token的标签。其实这种方案做NER也不错,为什么有些人会采用CRF替代softmax,softmax比较简单就是基于tokenembedding进行标签概率计算。而CRF的原理上理解是,CRF是全局无向转移概率图,能有效考虑词
- NLP任务之Named Entity Recognition
sunshine2853
自然语言处理人工智能深度学习
深度学习的实现方法:双向长短期记忆网络(BiLSTM):BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉序列数据中的长期依赖关系。在NER任务中,BiLSTM能有效地处理文本序列,捕捉前后文本的依赖关系。条件随机场(CRF):CRF经常与BiLSTM结合使用,形成BiLSTM-CRF模型。CRF层能够在序列标注任务中提供额外的约束,帮助模型更准确地预测实体标签。变压器(Transforme
- Bi-Lstm+crf命名实体识别任务中crf的作用
sunshine2853
深度学习lstm人工智能crf
这是一段使用百度ernie-1.0做特征提取的Bi-Lstm+crf的代码:classERNIE_LSTM_CRF(nn.Module):"""ernie_lstm_crfmodel"""def__init__(self,ernie_config,tagset_size,embedding_dim,hidden_dim,rnn_layers,dropout_ratio,dropout1,use_c
- 自然语言处理系列十五》中文分词》机器学习统计分词》CRF分词
陈敬雷-充电了么-CEO兼CTO
python人工智能算法分布式算法人工智能大数据自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列十五中文分词CRF分词总结自然语言处理系列十五中文分词中文分词(ChineseWordSegmentation)指的是将一个汉字序列切分成一个一个单独的词。分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。我们知道
- CRF条件随机场学习记录
V丶Chao
深度学习安全研究-威胁情报学习
阅读建议仔细阅读书[1]对应的序列标注章节,理解该方法面向的问题以及相关背景,然后理解基础的概念。引言威胁情报挖掘的相关论文中,均涉及到两部分任务:命名实体识别(NamedEntityRecognition,NER)和关系抽取,大多数网安实现NER的方法,采用比较多的方法包含:BiLstm+CRF或者Bert+CRF。其中条件随机场(conditionalrandomfields,CRF),这个模
- 基于BiLSTM-CRF对清华语料文本进行分类
伪_装
自然语言处理深度学习分类深度学习自然语言处理
安装TorchCRF!pipinstallTorchCRF==1.0.6构建BiLSTM-CRF#encoding:utf-8importtorchimporttorch.nnasnnfromTorchCRFimportCRFfromtorch.utils.dataimportDatasetfromsklearn.model_selectionimporttrain_test_splitimpor
- Deeplab系列语义分割模型
CPones
计算机视觉深度学习神经网络
目录一、网络模型1.deeplabv12.deeplabv23.deeplabv34.deeplabv3+二、空洞卷积三、代码实现总结一、网络模型1.deeplabv1深度卷积神经网络(DCNN)和条件随机场(CRF)相结合来解决像素级分类问题,最后一层的CRF提高模型捕捉细节和边缘分割的能力,对于大量使用最大池化和下采样导致分辨率下降的问题,通过空洞卷积来扩大感受野。2.deeplabv2ASP
- DeepLabV2网络简析
太阳花的小绿豆
深度学习网络解析语义分割深度学习计算机视觉DeepLabV2语义分割
论文名称:SemanticImageSegmentationwithDeepConvolutionalNets,AtrousConvolution,andFullyConnectedCRFs论文下载地址:https://arxiv.org/abs/1606.00915论文对应开源项目:http://liangchiehchen.com/projects/DeepLab.html视频讲解:https
- 机器学习-63-Structured Learning-04-Sequence Labeling Problem(结构化学习-序列标注(HMM,CRF))
迷雾总会解
李宏毅机器学习自然语言处理机器学习结构化学习
文章目录SequenceLabelingProblemSequenceLabelingDefinitionApplicationExampleTask:POStaggingOutline(大纲)HMM介绍什么样的问题需要HMM模型Howyougenerateasentence?step1step2HMM的数学表达Estimatingtheprobabilities(概率估计)HowtodoPOST
- 可能会绕过RNN了
我的昵称违规了
最近看了一些关于nlp技术路线的文章,自从2018年bert之后,nlp的重点似乎已经从rnn转移到transformer。在之前已经学习了lstm和gru,看了一下之后几天的学习安排,主要是基于crf的依存分析和命名实体辨别。我会尽量使用hanlp(这个库已经能够较好完成以上的需求)。因为Allenlp是基于pytorch,有可能还要看pytorch。进一步还会仔细拆一下transformer,
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方