点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
仓库链接:https://github.com/autodriving-heart/ICCV2023-Papers-autonomous-driving
ICCV2023结果陆续都出来了,收到了很多朋友中稿的消息,ICCV 2023今年一共收录 2100多篇,自动驾驶之心也第一时间进行了跟进,将已确定中稿的工作分享给大家,后面将会持续更新!
后面将会按照3D目标检测、BEV、协同感知、语义分割、点云、SLAM、大模型、NeRF、端到端、多模态融合等多个方向罗列!
如果您的工作也需要被收录,欢迎提交Issue,或者联系邮箱[email protected],我们会及时收录!
本内容由自公众号【自动驾驶之心】团队整理,自动驾驶之心建立了一系列技术交流群,面向自动驾驶与AI领域,包括:目标检测、语义分割、全景分割、实例分割、车道线、目标跟踪、3D目标检测、多模态感知、BEV感知、Occupancy、多传感器融合、多传感器标定、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等!
SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving
Paper:https://arxiv.org/abs/2303.09551
Code:https://github.com/weiyithu/SurroundOcc
OccNet: Scene as Occupancy
Paper:https://arxiv.org/pdf/2306.02851.pdf
Code:https://github.com/OpenDriveLab/OccNet
OccFormer: Dual-path Transformer for Vision-based 3D Semantic Occupancy Prediction
Paper: https://arxiv.org/pdf/2304.05316.pdf
Code: https://github.com/zhangyp15/OccFormer
OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic Occupancy Perception
Paper: https://arxiv.org/pdf/2303.03991.pdf
Code: https://github.com/JeffWang987/OpenOccupancy
VAD: Vectorized Scene Representation for Efficient Autonomous Driving
Paper: https://arxiv.org/pdf/2303.12077.pdf
Code: https://github.com/hustvl/VAD
DriveAdapter: New Paradigm for End-to-End Autonomous Driving to Alleviate Causal Confusion
Paper: https://arxiv.org/pdf/2308.00398.pdf
Code: https://github.com/OpenDriveLab/DriveAdapter
Among Us: Adversarially Robust Collaborative Perception by Consensus
Paper: https://arxiv.org/pdf/2303.09495.pdf
Code: https://github.com/coperception/ROBOSAC
HM-ViT: Hetero-modal Vehicle-to-Vehicle Cooperative perception with vision transformer
Paper: https://arxiv.org/pdf/2304.10628.pdf
Optimizing the Placement of Roadside LiDARs for Autonomous Driving
待更新!
UMC: A Unified Bandwidth-efficient and Multi-resolution based Collaborative Perception Framework
Paper: https://arxiv.org/pdf/2303.12400.pdf
ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation
Paper: https://arxiv.org/pdf/2307.14187.pdf
Code: https://github.com/KUIS-AI/adapt
PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images
Paper: https://arxiv.org/abs/2206.01256
Code: https://github.com/megvii-research/PETR
StreamPETR: Exploring Object-Centric Temporal Modeling for Efficient Multi-View 3D Object Detection
Paper: https://arxiv.org/pdf/2303.11926.pdf
Code: https://github.com/exiawsh/StreamPETR.git
Cross Modal Transformer: Towards Fast and Robust 3D Object Detection
Paper: https://arxiv.org/pdf/2301.01283.pdf
Code: https://github.com/junjie18/CMT.git
DQS3D: Densely-matched Quantization-aware Semi-supervised 3D Detection
Paper: https://arxiv.org/abs/2304.13031
Code: https://github.com/AIR-DISCOVER/DQS3D
SparseFusion: Fusing Multi-Modal Sparse Representations for Multi-Sensor 3D Object Detection
Paper: https://arxiv.org/abs/2304.14340
Code: https://github.com/yichen928/SparseFusion
MetaBEV: Solving Sensor Failures for BEV Detection and Map Segmentation
Paper: https://arxiv.org/pdf/2304.09801.pdf
Code: https://github.com/ChongjianGE/MetaBEV
Temporal Enhanced Training of Multi-view 3D Object Detector via Historical Object Prediction
Paper: https://arxiv.org/pdf/2304.00967.pdf
Code: https://github.com/Sense-X/HoP
Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and Class-balanced Pseudo-Labeling
Paper: https://arxiv.org/pdf/2307.07944.pdf
Code: https://github.com/zhuoxiao-chen/ReDB-DA-3Ddet
Learning from Noisy Data for Semi-Supervised 3D Object Detection
Paper: 待更新!
Code: https://github.com/zehuichen123/NoiseDet
SA-BEV: Generating Semantic-Aware Bird's-Eye-View Feature for Multi-view 3D Object Detection
Paper: https://arxiv.org/pdf/2307.11477.pdf
Code: https://github.com/mengtan00/SA-BEV
PG-RCNN: Semantic Surface Point Generation for 3D Object Detection
Paper: https://arxiv.org/pdf/2307.12637.pdf
Code: https://github.com/quotation2520/PG-RCNN
Rethinking Range View Representation for LiDAR Segmentation
Paper:https://arxiv.org/pdf/2303.05367.pdf
UniSeg: A Unified Multi-Modal LiDAR Segmentation Network and the OpenPCSeg Codebase
已收录,arxiv上暂未放出!
Segment Anything
Paper: https://arxiv.org/abs/2304.02643
Code: https://github.com/facebookresearch/segment-anything
MARS: Model-agnostic Biased Object Removal without Additional Supervision for Weakly-Supervised Semantic Segmentation
Paper: https://arxiv.org/abs/2304.09913
Code: https://github.com/shjo-april/MARS
Tube-Link: A Flexible Cross Tube Baseline for Universal Video Segmentation
Paper: https://arxiv.org/pdf/2303.12782.pdf
Code: https://github.com/lxtGH/Tube-Link
CPCM: Contextual Point Cloud Modeling for Weakly-supervised Point Cloud Semantic Segmentation
Paper: https://arxiv.org/pdf/2307.10316.pdf
Code: https://github.com/lizhaoliu-Lec/CPCM
To Adapt or Not to Adapt? Real-Time Adaptation for Semantic Segmentation
Paper: https://arxiv.org/pdf/2307.15063.pdf
Code: https://github.com/MarcBotet/hamlet
PointDC: Unsupervised Semantic Segmentation of 3D Point Clouds via Cross-modal Distillation and Super-Voxel Clustering
Paper: https://arxiv.org/abs/2304.08965
Code: https://github.com/HalvesChen/PointDC
Contrastive Model Adaptation for Cross-Condition Robustness in Semantic Segmentation
Paper: https://arxiv.org/pdf/2303.05194.pdf
Code: https://github.com/brdav/cma
PODA: Prompt-driven Zero-shot Domain Adaptation
Paper: https://arxiv.org/pdf/2212.03241.pdf
Code: https://github.com/astra-vision/PODA
Similarity Min-Max: Zero-Shot Day-Night Domain Adaptation
Paper: https://red-fairy.github.io/ZeroShotDayNightDA-Webpage/paper.pdf
Code: https://github.com/Red-Fairy/ZeroShotDayNightDA
Robo3D: Towards Robust and Reliable 3D Perception against Corruptions
Paper:https://arxiv.org/pdf/2303.17597.pdf
Code:https://github.com/ldkong1205/Robo3D
Implicit Autoencoder for Point Cloud Self-supervised Representation Learning
Paper: https://arxiv.org/pdf/2201.00785.pdf
Code: https://github.com/SimingYan/IAE
P2C: Self-Supervised Point Cloud Completion from Single Partial Clouds
Paper:
Code: https://github.com/CuiRuikai/Partial2Complete
CLIP2Point: Transfer CLIP to Point Cloud Classification with Image-Depth Pre-training
Paper: https://arxiv.org/pdf/2210.01055.pdf
Code: https://github.com/tyhuang0428/CLIP2Point
SVDFormer: Complementing Point Cloud via Self-view Augmentation and Self-structure Dual-generator
Paper: https://arxiv.org/pdf/2307.08492.pdf
Code: https://github.com/czvvd/SVDFormer
AdaptPoint: Sample-adaptive Augmentation for Point Cloud Recognition Against Real-world Corruptions
Paper: 待更新!
Code: https://github.com/Roywangj/AdaptPoint/tree/main
RegFormer: An Efficient Projection-Aware Transformer Network for Large-Scale Point Cloud Registration
Paper: https://arxiv.org/pdf/2303.12384.pdf
Code: https://github.com/IRMVLab/RegFormer
Point Cloud regression with new algebraical representation on ModelNet40 datasets
Paper: 待更新!
Code: https://github.com/flatironinstitute/PointCloud_Regression
Clustering based Point Cloud Representation Learning for 3D Analysis
Paper: https://arxiv.org/pdf/2307.14605.pdf
Code: https://github.com/FengZicai/Cluster3Dseg
Implicit Autoencoder for Point Cloud Self-supervised Representation Learning
Paper: https://arxiv.org/pdf/2201.00785.pdf
Code: https://github.com/SimingYan/IAE
PVT++: A Simple End-to-End Latency-Aware Visual Tracking Framework
Paper: https://arxiv.org/pdf/2211.11629.pdf
Code: https://github.com/Jaraxxus-Me/PVT_pp
Cross-modal Orthogonal High-rank Augmentation for RGB-Event Transformer-trackers
Paper: 待更新!
Code: https://github.com/ZHU-Zhiyu/High-Rank_RGB-Event_Tracker
ReST: A Reconfigurable Spatial-Temporal Graph Model for Multi-Camera Multi-Object Tracking
Paper: 待更新!
Code: https://github.com/chengche6230/ReST
Multiple Planar Object Tracking
Paper: 待更新!
Code: https://github.com/nku-zhichengzhang/MPOT
3DMOTFormer: Graph Transformer for Online 3D Multi-Object Tracking
Paper: 待更新!
Code: https://github.com/dsx0511/3DMOTFormer
MBPTrack: Improving 3D Point Cloud Tracking with Memory Networks and Box Priors
Paper: https://arxiv.org/pdf/2303.05071.pdf
Code: https://github.com/slothfulxtx/MBPTrack3D
EigenTrajectory: Low-Rank Descriptors for Multi-Modal Trajectory Forecasting
Paper: https://arxiv.org/pdf/2307.09306.pdf
Code: https://github.com/InhwanBae/EigenTrajectory
IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable Novel View Synthesis
Paper: https://arxiv.org/abs/2210.00647
Code: https://github.com/zju3dv/IntrinsicNeRF
SceneRF: Self-Supervised Monocular 3D Scene Reconstruction with Radiance Fields
Paper: https://arxiv.org/pdf/2212.02501.pdf
Code: https://github.com/astra-vision/SceneRF
Single-Stage Diffusion NeRF
Paper: https://arxiv.org/abs/2304.06714
Code: https://github.com/Lakonik/SSDNeRF
SemARFlow: Injecting Semantics into Unsupervised Optical Flow Estimation for Autonomous Driving
Paper: https://arxiv.org/pdf/2303.06209.pdf
Code: https://github.com/duke-vision/semantic-unsup-flow-release
ELFNet: Evidential Local-global Fusion for Stereo Matching
Paper: https://arxiv.org/pdf/2308.00728.pdf
Code: https://github.com/jimmy19991222/ELFNet
SimFIR: A Simple Framework for Fisheye Image Rectification with Self-supervised Representation Learning
Paper: 待更新
Code: https://github.com/fh2019ustc/SimFIR
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)
视频官网:www.zdjszx.com② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!
③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!