- 用python实现词频分析与可视化
qianqianaao
人工智能实验python开发语言图像处理人工智能计算机视觉nlp
目标:通过统计文本中各个词汇的出现频率,找出文本中的关键词,帮助我们了解文本的核心内容。方案:统计词频:计算每个词汇在文本中的出现次数。常用方法有TF(词频)和TF-IDF(词频-逆文档频率)。TF:词汇在文档中的出现频率。TF-IDF:不仅统计词频,还会考虑词汇在其他文档中的出现情况,减少常见词汇的影响。可视化:使用词云图或柱状图可视化高频词,帮助直观展示文本中的关键词。词云图:显示频率较高的词
- 如何在Python中实现文本相似度比较?
CodeJourney代码之旅
python学习python开发语言
在Python中实现文本相似度比较可以通过多种方法,每种方法都有其适用场景和优缺点。以下是一些常见的文本相似度比较方法:1.余弦相似度(CosineSimilarity)余弦相似度是通过计算两个向量之间夹角的余弦值来确定它们之间的相似度。在文本处理中,可以使用TF-IDF(TermFrequency-InverseDocumentFrequency)将文本转换为向量。fromsklearn.fea
- 【Elasticsearch】TF-IDF 和 BM25相似性算法
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,TF-IDF和BM25是两种常用的文本相似性评分算法,但它们的实现和应用场景有所不同。以下是对这两种算法的对比以及在Elasticsearch中的使用情况:TF-IDF-定义与原理:TF-IDF是一种经典的信息检索算法,用于评估一个词语对于一个文件集或语料库中某份文件的重要程度。它由两部分组成:-TF(TermFrequency):词频,即词语在文档中出现的次数。-
- 【Elasticsearch】自定义相似性算法
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,可以通过自定义相似度算法来优化搜索结果的相关性。以下是几种常见的自定义相似度算法的方法:1.使用内置相似度算法Elasticsearch默认使用BM25算法,但也可以切换到其他内置的相似度算法,如TF-IDF或布尔相似度。例如:```jsonPUT/my_index{"settings":{"similarity":{"my_similarity":{"type":
- 【RAG排序】rag排序代码示例-简单版
weixin_37763484
大模型人工智能算法搜索引擎
claude生成的一个排序的例子,有几种简单的方法。示例数据查询:“人工智能在医疗领域的应用前景如何?”文档库:8个相关文档,涵盖AI在医疗、金融、教育、自动驾驶等领域的应用实现的排序方法SimpleBM25Ranker-中文BM25排序器使用jieba进行中文分词计算TF-IDF和文档长度归一化处理中文停用词ChineseKeywordRanker-关键词匹配排序器Jaccard相似度+查询词覆
- 搜索领域必知算法:TF-IDF原理详解与Python实现
搜索引擎技术
算法tf-idfpythonai
搜索领域必知算法:TF-IDF原理详解与Python实现关键词:TF-IDF、搜索算法、词频、逆文档频率、Python实现摘要:本文深入探讨了搜索领域中至关重要的TF-IDF算法。首先介绍了TF-IDF算法的背景和基本概念,包括词频(TF)和逆文档频率(IDF)的含义。接着用通俗易懂的语言解释了这些核心概念之间的关系,并通过具体的例子和数学公式进行详细说明。然后给出了使用Python实现TF-ID
- BERT 模型微调与传统机器学习的对比
MYH516
bert机器学习人工智能
BERT微调与传统机器学习的区别和联系:传统机器学习流程传统机器学习处理文本分类通常包含以下步骤:特征工程:手动设计特征(如TF-IDF、词袋模型)模型训练:使用分类器(如SVM、随机森林、逻辑回归)特征和模型调优:反复调整特征和超参数BERT微调流程BERT微调的典型流程:预训练:使用大规模无标注数据预训练BERT模型数据准备:将文本转换为BERT输入格式(tokenize、添加特殊标记)模型微
- BERT分类器和朴素贝叶斯分类器比较
非小号
AIbert人工智能深度学习
一、核心原理对比维度预训练模型(如BERT)朴素贝叶斯分类器模型类型深度学习模型,基于Transformer架构,通过大规模无监督预训练学习语言表示。传统机器学习模型,基于贝叶斯定理和特征条件独立假设。特征表示自动学习文本的上下文相关表示(contextualembeddings),捕捉长距离语义依赖。通常使用词袋模型(BagofWords)或TF-IDF,忽略词序和上下文,仅考虑词频。训练方式两
- Python爬虫与数据挖掘:搜索引擎背后的技术
搜索引擎技术
python爬虫数据挖掘ai
Python爬虫与数据挖掘:搜索引擎背后的技术关键词:Python爬虫、数据挖掘、搜索引擎、网络爬虫、信息检索、自然语言处理、机器学习摘要:本文深入解析搜索引擎核心技术架构,结合Python爬虫与数据挖掘技术,系统阐述从网页抓取、数据清洗到索引构建、检索排序的完整流程。通过数学模型推导、代码实现和实战案例,揭示搜索引擎背后的技术原理,包括网络爬虫的抓取策略、倒排索引构建算法、TF-IDF与Page
- K-Means文档聚类 - 关键代码详解
Yungoal
kmeans聚类算法
1.数据加载与预处理importnet.sf.javaml.core.Dataset;importnet.sf.javaml.core.DefaultDataset;importnet.sf.javaml.core.DenseInstance;/***从实验二的TF-IDF结果加载数据*@paramtfidfVectors实验二生成的TF-IDF矩阵(double[][]类型)*@returnJa
- NLP-gensim库
安替-AnTi
NLP
Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口。LSILDAHDPDTMDIMTF-IDFword2vec、paragraph2vec基本概念语料(Corpus):一组原始文
- Python自然语言处理:gensim库的探索与应用
丶本心灬
本文还有配套的精品资源,点击获取简介:本文档介绍了gensim库——一个专为Python设计的开源自然语言处理工具,它支持词向量模型、主题模型、相似度计算、TF-IDF和LSA等核心功能。该库适用于文档相似性和主题建模任务,特别强调其在处理大规模语料库中的高效性和准确性。包含gensim-4.0.0版本的预编译安装包,为64位Windows系统上的Python3.6版本提供便捷安装体验。文档还提供
- 搜索领域索引构建的索引文本挖掘技术
搜索引擎技术
ai
搜索领域索引构建的索引文本挖掘技术关键词:倒排索引、文本预处理、TF-IDF、BM25、分布式索引、查询扩展、语义索引摘要:本文深入探讨搜索引擎核心组件索引构建中的文本挖掘技术。从基础倒排索引原理到现代语义索引技术,通过算法解析、数学建模和代码实现,系统讲解索引构建中的关键环节。重点分析TF-IDF、BM25等经典算法,探讨分布式索引架构设计,并展示基于深度学习的语义索引前沿进展。1.背景介绍1.
- 【NLP-01】文本相似度算法:Cosine Similarity、Levenshtein Distance、Word2Vec等介绍和使用
云天徽上
NLP算法机器学习人工智能word2vec自然语言处理nlp
文本相似度计算的算法是自然语言处理领域中的关键技术,主要用于衡量两段文本在内容、语义或结构上的相似程度。以下是一些常用的文本相似度计算算法:余弦相似度(CosineSimilarity):余弦相似度是通过计算两个向量的夹角余弦值来评估它们的相似度。在文本相似度计算中,首先将文本转换为向量表示(如TF-IDF向量),然后计算这些向量之间的余弦值。余弦值越接近1,表示文本越相似。Jaccard相似度:
- 中文分词与数据可视化02
晨曦543210
中文分词自然语言处理
jieba库简介jieba(结巴分词)是一个高效的中文分词工具,广泛用于中文自然语言处理(NLP)任务。它支持以下功能:分词:将句子切分为独立的词语。自定义词典:添加专业词汇或新词,提升分词准确性。关键词提取:基于TF-IDF或TextRank算法提取文本关键词。词性标注:识别词语的词性(如名词、动词)。并行分词:加速大规模文本处理。核心函数与用法1.分词功能jieba.cut(sentence,
- 建立多项式朴素贝叶斯模型实战指南
万能小贤哥
机器学习人工智能算法
一、模型选择与实现针对文本分类任务(如垃圾邮件识别),多项式朴素贝叶斯(MultinomialNB)是最优选择:适用场景:处理离散型特征(如词频、TF-IDF值)核心优势:直接利用整数型词频特征,无需假设数据分布对比区别:高斯朴素贝叶斯:假设特征符合正态分布,适合连续型数据伯努利朴素贝叶斯:处理二值化特征(是否存在某个词)python复制下载fromsklearn.naive_bayesimpor
- AI技术视角:美联储信号与黄金动态的量化研究——基于多模态数据分析框架
金融小师妹
人工智能大数据算法
一、美联储政策文本的量化解构与市场响应追踪技术框架说明:采用自然语言处理(NLP)领域的主流模型BERT-CNN,对美联储政策声明进行语义权重分析。通过TF-IDF算法量化"观望"等政策关键词的文本显著性,结合LSTM网络对发布会语录进行情感极性分类(情感强度值区间[-1,1]),构建政策立场的多维度量化表征。市场数据关联:运用向量自回归(VAR)模型捕捉政策信号与资产价格的动态关系。实证结果显示
- 从零开始大模型开发与微调:文本主题的提取:基于TFIDF
AI天才研究院
计算AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
引言文本主题提取是自然语言处理(NLP)领域的一项重要技术,它通过对大规模文本数据的分析,识别出文本所涉及的主要主题或概念。在信息检索、文本分类、推荐系统以及知识图谱构建等多个应用场景中,文本主题提取发挥着至关重要的作用。有效的文本主题提取不仅能提高文本分析的精度和效率,还能帮助我们更好地理解和利用文本数据中的隐含信息。本文旨在为读者提供一份全面的文本主题提取指南,重点介绍基于TF-IDF(Ter
- 开放域问答的密集段落检索(以密集检索的角度解决 QA 问题)
多吃轻食
深度解析:RAG与大模型检索机器学习自然语言处理深度学习人工智能QA
开放域问答的密集段落检索摘要开放域问答依赖于有效的段落检索去选择候选内容,传统的稀疏向量空间模型,比如TF-IDF恶和BM25,确实是一个方法。在这项工作中,我们证明了检索实际上可以单独使用密集表示来实现,其中嵌入是通过一个简单的双编码器框架从少量的问题和段落中学习到的。在广泛的开放域QA数据集上进行评估时,我们的密集检索器在前20个段落检索准确率方面的绝对性能大大超过强大的Lucene-BM25
- 常用回环检测算法对比(SLAM)
具身小站
算法人工智能技术人工智能算法人工智能回环检测SLAM
回环检测本质上是一种数据相似性检测算法,原理是通过识别机器人是否回到历史位置,建立位姿约束以优化全局地图,纠正长期的里程计漂移实现全局地图的一致性,简单讲就是识别场景中的重复特征以修正累积误差。1.概述算法类别原理特点优势劣势词袋模型特征聚类为单词,TF-IDF加权相似度依赖手工特征,倒排索引加速检索实时性高,适合移动端忽略空间信息,误判相似场景概率改进模型贝叶斯滤波动态更新概率分布结合里程计与场
- 文件内容课堂总结
2301_79975534
人工智能
结构化解析能力需实现三级标题自动识别(H1/H2/H3),支持主流文档格式(Word/PDF/Markdown/纯文本)。通过正则表达式匹配标题层级特征,结合语义分析验证标题有效性。章节段落划分准确率需达到95%以上,项目符号列表识别支持数字/字母/符号多种格式。内容提炼机制关键句提取:融合TF-IDF权重分析与TextRank算法,构建句子重要性网络。实验数据显示核心句提取准确率达82%,召回率
- Python 计算文本相似度(Levenshtein、Jaccard、TF-IDF)
数据库管理员的恶梦fB
pythontf-idf开发语言
```htmlPython计算文本相似度(Levenshtein、Jaccard、TF-IDF)Python计算文本相似度(Levenshtein、Jaccard、TF-IDF)在自然语言处理(NLP)中,计算文本相似度是一个常见的任务。文本相似度可以用于搜索引擎优化、抄袭检测、推荐系统等多个领域。本文将介绍三种常用的文本相似度计算方法:Levenshtein距离、Jaccard相似系数和TF-I
- 解决TF-IDF增量学习问题的思路与方案
大泽九章
python开发语言TF-IDF
TF-IDF的传统实现面临增量学习困难,因为IDF计算依赖全局文档统计信息。但是实际的工作当中往往数据是增量的,并且定期增量和不定期增量混合,所以为了实际考虑,还是有必要思考如何解决TF-IDF增量问题的。一、增量学习核心挑战IDF的全局依赖性:新文档加入需要重新计算所有文档的IDF值原始公式:IDF(t)=log(总文档数/包含t的文档数)特征维度变化:新文档可能引入新词项需要动态扩展特征空间历
- Elasticsearch多字段搜索与价格范围过滤的Go语言实现
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型elasticsearchgolang大数据
文章目录Elasticsearch多字段搜索与价格范围过滤的Go语言实现1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程4.3案例分析与讲解TF-IDF计算示例BM25计算示例向量空间模型示例实际应用中的考虑因素5.项目实践:代码实例和详细解释
- TF-IDF算法及sklearn实现
雪顶猫的鳄
pythontf-idf算法sklearnpython
一、TF-IDF算法介绍TF-IDF(termfrequency-inversedoumentfrequency,词频-逆向文档频率)是一种用于信息检索(informationretrieval)与文本挖掘(textmining)的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对与一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比的增加,但同时会
- TF-IDF算法详解
听风Q
NLPtf-idf算法深度学习nlp机器学习
文章目录TF-IDF算法TF-IDF算法介绍TF=>词频(TermFrequency)IDF=>逆向文件频率(InverseDocumentFrequency)TF-IDF实际上是:TF*IDFpython3实现NLTK实现Sklearn实现jiaba实现TF-IDF算法缺点TF-IWF算法TF-IDF算法TF-IDF算法介绍TF-IDF(termfrequency–inversedocument
- 从关键词到权重:TF-IDF算法解析
多巴胺与内啡肽.
机器学习tf-idf算法机器学习
文章目录前言一、TF-IDF:关键词的“价值”评估师二、TF-IDF的计算:拆解关键词的“价值”三、TF-IDF的应用:从搜索引擎到文本挖掘四、代码实现:从《红楼梦》中提取核心关键词1、分卷处理1.1代码功能1.2代码实现1.2.1、读取文件1.2.2逐行处理1.2.3.关闭文件2、分词与停用词过滤2.1代码功能2.2代码实现2.2.1读取分卷内容构建DataFrame:2.2.2分词与停用词过滤
- 深入解析BM25:LangChain中的高效检索算法
AI Agent首席体验官
langchain算法
1.BM25算法BM25是信息检索领域中一个重要的排序算法,它用来计算查询与文档之间的相关性。让我们通过一个图书馆的例子来理解:想象你是一个图书馆管理员,有人来问你:“我想找关于太空探索和火星的书”。传统TF-IDF方法:就像你先数一数每本书中"太空探索"和"火星"这些词出现的次数,然后优先推荐这些词出现最多的书。但这有个问题:如果一本1000页的书和一本100页的书都提到"火星"10次,按理说短
- 从经典到现代:BM25在LangChain中的应用与优势
AI Agent首席体验官
langchain
1.BM25算法BM25是信息检索领域中一个重要的排序算法,它用来计算查询与文档之间的相关性。让我们通过一个图书馆的例子来理解:想象你是一个图书馆管理员,有人来问你:“我想找关于太空探索和火星的书”。传统TF-IDF方法:就像你先数一数每本书中"太空探索"和"火星"这些词出现的次数,然后优先推荐这些词出现最多的书。但这有个问题:如果一本1000页的书和一本100页的书都提到"火星"10次,按理说短
- TF-IDF:文本挖掘中的关键词提取利器
巷955
tf-idf
引言在自然语言处理(NLP)和文本挖掘中,TF-IDF是一种常用的技术,用于评估一个词在文档中的重要性。它不仅在信息检索领域广泛应用,还在文本分类、关键词提取等任务中发挥着重要作用。本文将详细介绍TF-IDF的原理,并通过一个实际的代码示例来展示如何使用TF-IDF从《红楼梦》中提取核心关键词。1.什么是TF-IDF?TF-IDF是一种统计方法,用于评估一个词在文档中的重要性。它由两部分组成:-T
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本