大数据List去重

概述

两个超大List集合去重,时间最短的方式去实现。

详细

MaxList模块主要是对Java集合大数据去重的相关介绍。

背景: 最近在项目中遇到了List集合中的数据要去重,大概一个2500万的数据,开始存储在List中,需要跟一个2万的List去去重。

直接两个List去重

说到去重,稍微多讲一点啊,去重的时候有的小伙伴可能直接对2500万List foreach循环后直接删除,
其实这种是错误的(java.util.ConcurrentModificationException),大家可以自己去试一下;(注: for循环遍历删除不报错,但是效率低,不推荐使用)
首先你需要去看下foreach和迭代器的实现。foreach的实现就是用到了迭代器,所以你在foreach的时候对list进行删除操作,
迭代器Iterator无法感知到list删除了,所以会报错。直接贴代码解释下。

ArrayList中Iterator的实现:

    private class Itr implements Iterator {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;
        public boolean hasNext() {
            return cursor != size;
        }
        @SuppressWarnings("unchecked")
        public E next() {
            checkForComodification();
            int i = cursor;
            if (i >= size)
                throw new NoSuchElementException();
            Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length)
                throw new ConcurrentModificationException();
            cursor = i + 1;
            return (E) elementData[lastRet = i];
        }
        public void remove() {
            if (lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();
            try {
                ArrayList.this.remove(lastRet);
                cursor = lastRet;
                lastRet = -1;
                expectedModCount = modCount;
            } catch (IndexOutOfBoundsException ex) {
                throw new ConcurrentModificationException();
            }
        }
        @Override
        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer consumer) {
            Objects.requireNonNull(consumer);
            final int size = ArrayList.this.size;
            int i = cursor;
            if (i >= size) {
                return;
            }
            final Object[] elementData = ArrayList.this.elementData;
            if (i >= elementData.length) {
                throw new ConcurrentModificationException();
            }
            while (i != size && modCount == expectedModCount) {
                consumer.accept((E) elementData[i++]);
            }
            // update once at end of iteration to reduce heap write traffic
            cursor = i;
            lastRet = i - 1;
            checkForComodification();
        }
        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

通过上述的ArrayList里面的Iterator迭代器的实现我们可以看到:
基本上ArrayList采用size属性来维护自已的状态,而Iterator采用cursor来来维护自已的状态。
当你直接在foreach里面对list进行删除操作,size出现变化时,cursor并不一定能够得到同步,除非这种变化是Iterator主动导致的。(调用list.iterator()方法的原因)

从上面的代码可以看到当Iterator.remove方法导致ArrayList列表发生变化时,他会更新cursor来同步这一变化。但其他方式导致的ArrayList变化,Iterator是无法感知的。ArrayList自然也不会主动通知Iterator们,那将是一个繁重的工作。Iterator到底还是做了努力:为了防止状态不一致可能引发的无法设想的后果,Iterator会经常做checkForComodification检查,以防有变。如果有变,则以异常抛出,所以就出现了上面的异常。
如果对正在被迭代的集合进行结构上的改变(即对该集合使用add、remove或clear方法),那么迭代器就不再合法(并且在其后使用该迭代器将会有ConcurrentModificationException异常被抛出).
如果使用迭代器自己的remove方法,那么这个迭代器就仍然是合法的。

    public static void deWeightList(List des, List sourse){
            if(sourse == null || sourse.size() <= 0){
                return;
            }l
            Iterator listStr = sourse.iterator();
            while (listStr.hasNext()){
                String item = listStr.next();
                for (String ditem: des) {
                    if(item.equals(ditem)){
                        listStr.remove();
                        break;
                    }
                }
            }
            logger.info("after deWight list size: " + sourse.size());
    }

List结合Set去重

    public static void deWeightList(Set des, List sourse) {
            if (sourse == null || sourse.size() <= 0) {
                return;
            }
            Iterator listStr = sourse.iterator();
            while (listStr.hasNext()) {
                String item = listStr.next();
                if (des.contains(item)) {
                    listStr.remove();
                }
            }
            logger.info("after deWight list size: " + sourse.size());
    }

List结合Set去重(不是直接对list进行删除,而是组装新list,考虑到list删除效率低)

    public static void deWeightListByNewList(Set des, List sourse) {
        if (sourse == null || sourse.size() <= 0) {
            return;
        }
        Iterator listStr = sourse.iterator();
        List existList = new ArrayList();
        while (listStr.hasNext()) {
            String item = listStr.next();
            if(!des.contains(item)){
                //TODO 对去重后的数据进行逻辑操作,不一定要删除,可以换个思路(是否可以直接逻辑操作,不一定非要再把数据写进集合后,然后遍历集合在进行逻辑操作)
                existList.add(item); //改成添加进新的list,考虑到list的删除效率慢(非要得到删除后的集合的情况下,否则走else)
            }
    //            if (des.contains(item)) {
    //                //listStr.remove(); //考虑到list的删除效率慢,此种方法对于大数据集合来说不合适
    //            }
        }
        sourse.clear();
        sourse = existList;
        logger.info("after deWight list size: " + sourse.size());
    }

遍历过程中去重

个人最为推荐的一种,因为效率最高,也能达到功能的需要。

    for (String item: maxArrayList) {
        if(testSet.contains(item)){
            //TODO
        }
    }

测试结果如下

下面是1000万的list和20000的list去重两种方式所花的时间,可以看出使用set去重的效率要高很多。
1.list结合list去重时间:
14:52:02,408 INFO  [RunTest:37] start test list:17-11-07 14:52:02
14:59:49,828 INFO  [ListUtils:66] after deWight list size: 9980000
14:59:49,829 INFO  [RunTest:39] end test list:17-11-07 14:59:49
2.list结合set去重时间:
14:59:53,226 INFO  [RunTest:44] start test set:17-11-07 14:59:53
15:01:30,079 INFO  [ListUtils:80] after deWight list size: 9980000
15:01:30,079 INFO  [RunTest:46] end test set:17-11-07 15:01:30
下面是2500万的list和20000的list去重两种方式所花的时间,可以看出使用set去重的效率要更加的高,(数据量越大越明显)。
个人对set的大小为1500万也进行了测试,方案3,4的效率也是非常的高。
1.list结合list去重时间:
15:17:47,114 INFO  [RunTest:35] start test list, start time: 17-11-07 15:17:47
15:49:04,876 INFO  [ListUtils:57] after deWight list size: 24980000
15:49:04,877 INFO  [RunTest:39] end test list, end time: 17-11-07 15:49:04
2.list结合set去重时间:
15:49:17,842 INFO  [RunTest:44] start test set, start time: 17-11-07 15:49:17
15:53:22,716 INFO  [ListUtils:71] after deWight list size: 24980000
15:53:22,718 INFO  [RunTest:48] end test set, end time: 17-11-07 15:53:22
3. List结合Set去重(不是直接对list进行删除,而是组装新list,考虑到list删除效率低)
17:18:44,583 INFO  [RunTest:57] start test set, start time: 17-11-22 17:18:44
17:18:54,628 INFO  [ListUtils:92] after deWight list size: 23500000
17:18:54,628 INFO  [RunTest:61] end test set, end time: 17-11-22 17:18:48
4.遍历过程中结合set去重:(个人最为推荐的原因之一,效率高到令人爽到不行)
15:17:45,762 INFO  [RunTest:24] start test foreach list directly, start time: 17-11-07 15:17:45
15:17:47,114 INFO  [RunTest:32] end test foreach list directly, end time: 17-11-07 15:17:47

总结

通过上述测试我们可以看出,有时候我们排重的时候,不一定要拍完重再对排重后的数据进行遍历,可以在遍历的过程中进行排重,注意用来排重的那个集合放到Set中,
可以是HashSet,或者其他Set(推荐使用HashSet),因为Set的contains效率更高,比list高很多。

然后考虑到如果非要拿到去重后的list,考虑使用方案3《List结合Set去重(不是直接对list进行删除,而是组装新list,考虑到list删除效率低)》,通过测试,这种方法效率也是非常的高。
与方案4相比,稍微慢一点点。

对于上述方案1,测试也使用过组装新list的方式,而不是list.remove。但是效率还是比较慢。

你可能感兴趣的:(方案设计,大数据,list,python)