from torch_geometric.datasets import Planetoid
import torch
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, SAGEConv, GATConv
dataset = Planetoid(root='/tmp/Cora', name='Cora')
print(dataset)
class GCN_Net(torch.nn.Module):
def __init__(self, features, hidden, classes):
super().__init__()
self.conv1 = GCNConv(features, hidden)
self.conv2 = GCNConv(hidden, classes)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
class GraphSAGE_Net(torch.nn.Module):
def __init__(self, features, hidden, classes):
super().__init__()
self.sage1 = SAGEConv(features, hidden)
self.sage2 = SAGEConv(hidden, classes)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.sage1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.sage2(x, edge_index)
return F.log_softmax(x, dim=1)
class GAT_Net(torch.nn.Module):
def __init__(self, features, hidden, classes, heads=1):
super().__init__()
self.gat1 = GATConv(features, hidden, heads=heads)
self.gat2 = GATConv(hidden*heads, classes)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.gat1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.gat2(x, edge_index)
return F.log_softmax(x, dim=1)
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
GCN_model = GCN_Net(dataset.num_node_features, 16, dataset.num_classes).to(device)
GraphSAGE_model = GraphSAGE_Net(dataset.num_node_features, 16, dataset.num_classes).to(device)
GAT_model = GAT_Net(dataset.num_node_features, 16, dataset.num_classes, heads=4).to(device)
data = dataset[0].to(device)
models = [GCN_model, GraphSAGE_model, GAT_model]
for model in models:
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(200):
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
model.eval()
pred = model(data).argmax(dim=1)
correct = (pred[data.test_mask] == data.y[data.test_mask]).sum()
acc = int(correct) / int(data.test_mask.sum())
print(model, "的Acc:", acc)
"""
Cora()
GCN_Net(
(conv1): GCNConv(1433, 16)
(conv2): GCNConv(16, 7)
) 的Acc: 0.814
GraphSAGE_Net(
(sage1): SAGEConv(1433, 16, aggr=mean)
(sage2): SAGEConv(16, 7, aggr=mean)
) 的Acc: 0.792
GAT_Net(
(gat1): GATConv(1433, 16, heads=4)
(gat2): GATConv(64, 7, heads=1)
) 的Acc: 0.788
"""