- Bengio新作Aaren:探索Transformer性能与RNN效率的融合
AI记忆
深度学习论文与相关应用transformerrnn深度学习AarenBengio
论文链接:https://arxiv.org/pdf/2405.13956一、摘要总结:本文提出了一种新的注意力机制,名为Aaren,它将注意力视为一种特殊的递归神经网络(RNN),能够高效地计算其多对一RNN输出。Aaren不仅能够并行训练,而且能够在推理时高效地更新新令牌,仅需要常数内存。实验表明,Aaren在四个流行的序列问题设置(强化学习、事件预测、时间序列分类和时间序列预测)的38个数据
- 发文新思路!双通道CNN的惊人突破,准确率接近100%!
沃恩智慧
深度学习人工智能cnn人工智能神经网络
双通道CNN作为一种创新的卷积神经网络架构,正引领深度学习领域的新趋势。其核心优势在于并行卷积层设计,能够同时处理更多特征信息,从而显著提升模型的特征表示能力和识别精度。这种架构不仅提高了计算效率,还有效降低了过拟合风险,使其在复杂视觉任务中表现卓越。例如,最新的研究提出了一种名为DDTransUNet的混合网络,结合了Transformer和CNN的优势,通过双分支编码器和双重注意力机制,有效解
- 基于华为自研NPU Ascend 910的TensorFlow 1.x训练脚本迁移和使能混合精度记录
Tianyi Li 1997
华为云tensorflow华为人工智能深度学习python
简介基于TesorFlow1.x以Sess.run形式搭建入门级——手写数字分类网络,并迁移到华为自研NPUAscend910,同时使能混合精度。硬件介绍华为自研NPUAscend910,即昇腾910AI处理器(简称NPU),根据官方介绍,是在2019年发布的人工智能(AI)专用的神经网络处理器,其算力高达256T,最新款算力高达310T,是业界主流芯片算力的2倍。当前业界大多数训练脚本基于Ten
- Python机器学习舆情分析项目案例分享
数澜悠客
数字化转型python机器学习开发语言
数据收集与准备1.数据收集多样化数据源:从社交媒体平台(如微博、Twitter)、新闻网站、论坛等多渠道收集数据,以获取更全面的舆情信息。可以使用Python的requests库和网页解析库(如BeautifulSoup)进行网页数据爬取,使用Tweepy库获取Twitter数据。数据标注:对于监督学习,需要对收集到的数据进行标注,标记为积极、消极或中性等类别。可以使用人工标注的方式,也可以利用半
- 2月第五讲:深度剖析 Python 编程中的数据处理与机器学习应用
2501_90442144
python机器学习开发语言
一、引言在当今数字化时代,编程已经成为推动各个领域发展的关键力量。Python作为一种高级编程语言,以其简洁、易读、功能强大等特点,在数据处理、机器学习、人工智能等众多领域得到了广泛的应用。本文将深入探讨Python在数据处理和机器学习方面的应用,通过实际案例展示其强大的功能和灵活性,帮助读者更好地理解和掌握Python编程在这些领域的应用技巧。二、Python基础概述2.1Python的特点与优
- PyTorch Lightning LightningDataModule 介绍
qq_27390023
pytorch人工智能python
LightningDataModule是PyTorchLightning提供的数据模块,用于统一管理数据加载流程(包括数据准备、预处理、拆分、批量加载等)。它的核心作用是将数据处理逻辑与模型解耦,提高代码的可复用性和可读性。1.LightningDataModule的作用✅封装数据预处理:数据下载、清理、转换等步骤都可以在LightningDataModule中完成。✅统一数据加载流程:确保训练、
- 【笔记】使用 Pytorch 进行分布式训练
LittleNyima
人工智能深度学习pytorch分布式
本文原文以CCBY-NC-SA4.0许可协议发布于技术相关|使用Pytorch进行分布式训练,转载请注明出处。其实Pytorch分布式训练已经不算什么新技术了,之所以专门写一篇blog是因为今天训模型的时候出现了一个没见过的问题,在调试的时候发现自己平时都是用别人写好的分布式代码,没有深入研究过其中的实现细节,因此感觉有必要整理吸收一下。最简单的数据并行作为最简单的并行计算方式,使用nn.Data
- 实验随记2-Pytorch Lightning多机多卡训练
晓岚和雪
实验随记pytorch人工智能python深度学习分布式
本文章主要收录笔者在阅读时发现的一些比较优质的多机多卡训练教程~~,由于pytorchLightning多机多卡示例很少,因此需要等笔者最近做完实验验证后才能更新示例。不断完善中…~~及多机多卡训练细节。任务需求:实现多机多卡训练,模型可能继承torch.nn或者torch.lightning。示例实现5节点4GPU共计20卡训练。使用pytorch_lightning==1.9.4存在bug:启
- PyTorch Lightning多GPU分布式日志介绍
qq_27390023
pytorch人工智能python
分布式日志是指在分布式系统中,多个节点(如多台机器或多个GPU)协同工作时,对系统运行状态、错误信息、性能指标等进行记录的过程。在多GPU/分布式训练环境下,多个进程会同时运行,普通的print()或logging可能会在所有GPU上重复输出,导致日志混乱。PyTorchLightning提供了一些分布式日志控制工具,确保日志仅在rank0进程打印,防止重复输出。lightning_utiliti
- 零基础入门机器学习 -- 第四章分类问题与逻辑回归
山海青风
#机器学习机器学习分类逻辑回归python人工智能
4.1分类vs回归在机器学习中,任务通常分为两大类:回归(Regression):用于预测连续数值,如房价、温度、工资等。例如:预测明天的气温(28.5°C)。预测一辆二手车的价格(30,000元)。分类(Classification):用于预测离散类别,如垃圾邮件vs正常邮件。例如:判断一封邮件是否是垃圾邮件(“垃圾邮件”or“正常邮件”)。预测一个贷款申请是否会被批准(“批准”or“拒绝”)。
- 超级实用!一个基于python的简化版深度学习框架,包括深度学习神经网络的设计和深度学习模型的设计,适用于中小型项目的开发和实现
大懒猫软件
深度学习python神经网络numpypytorch人工智能
一、运用Python技术开发深度学习框架需要具备的基础知识总结开发一个基于Python的深度学习框架是一个复杂的任务,需要具备多方面的基础知识。以下是一些关键领域的总结,帮助你更好地准备和理解开发深度学习框架所需的知识。1.Python编程基础语法和数据结构:掌握Python的基本语法、数据类型(如列表、字典、元组等)和控制流(如循环、条件语句等)。函数和模块:理解函数的定义和使用,以及如何组织代
- 利用Blackbox AI让编程更轻松
人工智能ai开发图像处理
引言随着人工智能技术的发展,AI已经成为工作中不可缺少的工具之一。俗话讲“术业有专攻”,对AI来说当然也是如此。由于训练集、调教等方面的差别,不同的AI适用的工作也不尽相同。在编程辅助方面,已经有一系列比较成熟的平台,但它们一方面价格昂贵,另一方面功能比较单一。Blackbox.ai是一个新出现的人工智能平台,它主要针对的是编程和机器学习方面的AI技术落地。和其他AI平台相比,它提供了简洁美观的界
- Python中的决策树算法探索
Soft_Leader
算法python决策树
在Python中,决策树算法是一种常用的机器学习技术,用于分类和回归问题。下面我们将探索如何使用Python中的scikit-learn库来实现决策树算法,并简要介绍其基本概念和用法。1.安装必要的库如果你还没有安装scikit-learn库,你可以使用pip来安装它:bash复制代码pipinstall-Uscikit-learn2.导入必要的库和模块python复制代码fromsklearn.
- 焦损函数(Focal Loss)与RetinaNet目标检测模型详解
人工智能
焦损函数(FocalLoss)与RetinaNet目标检测模型详解阅读时长:19分钟发布时间:2025-02-14近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目前,精度最高的目标检测器大多基于由R-CNN推广的两阶段方法,即对稀疏的候选目标位置集应用分类器。相比之下,在规则、密集的可
- 多模态模型详解
换个网名有点难
深度学习人工智能计算机视觉
多模态模型是什么多模态模型是一种能够处理和理解多种数据类型(如文本、图像、音频、视频等)的机器学习模型,通过融合不同模态的信息来提升任务的性能。其核心在于利用不同模态之间的互补性,增强模型的鲁棒性和准确性。如何融合多个模型以下是多模态模型的融合方法及关键技术的详细解析:一、多模态模型的核心概念模态定义:单模态:单一类型的数据(如纯文本或纯图像)。多模态:多种类型数据的组合(如“图像+文本”“音频+
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- 【收藏不迷路】380种群智能优化算法-Matlab代码免费获取(截至2025.2.14)
88号技师
智能优化算法算法matlab优化算法人工智能
群智能优化算法可以作为很好的工具来解决许多实际问题,如特征选择、图像分割、医学诊断,经济排放调度问题,植物病害识别,工程设计,PID优化控制,设备故障诊断,机器学习模型参数整定等等。在这个领域,有一个理论:没有免费午餐(NoFreeLunch,NFL)理论。它从逻辑上证明了不存在最适合解决所有优化问题的元启发式算法。换句话说,特定的元启发式可能在一组问题上显示出非常有希望的结果,但相同的算法可能在
- python 并行框架_基于python的高性能实时并行机器学习框架之Ray介绍
weixin_39778582
python并行框架
前言加州大学伯克利分校实时智能安全执行实验室(RISELab)的研究人员已开发出了一种新的分布式框架,该框架旨在让基于Python的机器学习和深度学习工作负载能够实时执行,并具有类似消息传递接口(MPI)的性能和细粒度。这种框架名为Ray,看起来有望取代Spark,业界认为Spark对于一些现实的人工智能应用而言速度太慢了;过不了一年,Ray应该会准备好用于生产环境。目前ray已经发布了0.3.0
- PyTorch 与 TensorFlow 的深度解析:全面比较两大深度学习框架,助你选择最适合的工具
BuluAI
深度学习pytorchtensorflow
在人工智能的浪潮中,深度学习框架成为了开发者们的得力助手。PyTorch和TensorFlow作为其中的佼佼者,各自拥有庞大的用户群体和强大的社区支持。但它们在设计理念、使用体验和应用场景上有着显著的差异。今天,我们就来深入探讨这两个框架的特点,帮助你在项目中做出更明智的选择。计算图的构建方式PyTorch的动态图机制是其一大特色。在PyTorch中,计算图是在程序运行时动态构建的,这使得开发者可
- 一个AI应用的开发、上线流程解析
終不似少年遊*
人工智能ai应用ckptonnx模型文件部署推理
目录1.模型文件格式1.1CheckPoint(ckpt)文件格式1.2.pth文件格式1.3.mindir文件格式1.4.onnx文件格式2.推理(Inference)2.1.pth(PyTorch模型格式)2.2.mindir(MindSpore模型格式)2.3.onnx(开放神经网络交换格式)2.4实际例子:自动驾驶系统中的推理模块3.APP与网页4.运维中心与本地部署SDK5.RAG(Re
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- 《探秘Hogwild!算法:无锁并行SGD的神奇之路》
人工智能深度学习
在深度学习和机器学习的领域中,优化算法的效率和性能一直是研究的重点。Hogwild!算法作为一种能够实现无锁并行随机梯度下降(SGD)的创新方法,受到了广泛关注。下面就来深入探讨一下Hogwild!算法是如何实现这一壮举的。基础原理铺垫随机梯度下降(SGD)算法是基于梯度下降算法产生的常见优化算法。其目标是优化损失函数,通过对每一个超参数求偏导得到当前轮的梯度,然后向梯度的反方向更新,不断迭代以获
- VSCode通过跳板机免密连接远程服务器的解决方案
爱编程的喵喵
Python基础课程vscode服务器跳板机免密连接解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了VSCode通过跳板机免密连接远程服
- 【深入探讨 ResNet:解决深度神经网络训练问题的革命性架构】
机器学习司猫白
深度学习人工智能resnet神经网络残差
深入探讨ResNet:解决深度神经网络训练问题的革命性架构随着深度学习的快速发展,卷积神经网络(CNN)已经成为图像识别、目标检测等计算机视觉任务的主力军。然而,随着网络层数的增加,训练深层网络变得愈加困难,主要问题是“梯度消失”和“梯度爆炸”问题。幸运的是,ResNet(ResidualNetworks)通过引入“残差学习”概念,成功地解决了这些问题,极大地推动了深度学习的发展。本文将详细介绍R
- LowCode 低代码平台集成 AI 大模型会产生怎样的化学反应?
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型架构师必知必会系列ChatGPT低代码人工智能
LowCode低代码平台集成AI大模型会产生怎样的化学反应?低代码平台(LowCodePlatform)是一种新型的应用开发方式,它将应用开发的过程简化为“拖拽组件、配置属性、生成代码”的方式,使得应用开发变得更加简单和快捷。而AI大模型(AIBigModel)则是一种利用深度学习技术构建的大规模神经网络,它可以对海量数据进行训练和预测,从而实现各种智能化的应用。本文将探讨低代码平台集成AI大模型
- 使⽤MATLAB进⾏⽬标检测
唐BiuBiu
机器学习matlab开发语言目标检测深度学习
目录数据准备定义模型并训练用测试集评估性能推理过程⼀⾏代码查看⽹络结构⼀⾏代码转onnx结语⼈⽣苦短,我⽤MATLAB。Pytorch在深度学习领域占据了半壁江⼭,最主要的原因是⽣态完善,⽽且api直观易⽤。但谁能想到现在MATLAB⽤起来⽐Pytorch还好⽤。从数据集划分到训练,再到性能验证和画图,仅仅使⽤了⼏⼗⾏代码。炼丹师们终于可以解放编码时间,把⾃⼰的精⼒放在摸⻥(划掉)算法本身上了。下
- Educoder - Java入门 - 循环结构进阶题目总结
m0_74824054
面试学习路线阿里巴巴java开发语言
第1关:for循环的进阶使用-嵌套循环(1)循环打印一颗星,循环十次;打印完十颗星之后换行;循环可以嵌套循环,循环的嵌套是指在循环里面写循环。packagestep1;publicclassForPractice1{publicstaticvoidtest(){/start/inti,j;for(i=1;i=i;j--){System.out.print("*");}System.out.prin
- 股票自动化交易
reset2021
python
股票自动化交易是指通过编写程序自动执行股票买卖操作,以减少人为干预,提高交易效率和准确性。Python作为一种功能强大且易于上手的编程语言,广泛应用于金融领域,尤其是在量化交易和自动化交易中。本文将介绍如何使用Python实现一个简单的股票自动化交易系统。1.自动化交易的基本流程股票自动化交易通常包括以下几个步骤:数据获取:从交易所或第三方API获取实时股票数据。策略制定:基于技术指标或机器学习模
- 零基础入门机器学习 -- 第一章什么是机器学习?
山海青风
#机器学习机器学习人工智能python
1.1机器学习的定义机器学习(MachineLearning,ML)是让计算机从数据中学习,然后在没有明确编程的情况下进行预测或决策的技术。传统编程:程序员写出明确的规则,例如“如果温度低于0℃,显示‘结冰’”。机器学习:计算机分析历史天气数据,自行找出“低温→可能结冰”的规律,然后对新数据进行预测。机器学习的核心思想是:数据+算法=经验+预测能力。1.2机器学习vs传统编程特点传统编程机器学习规
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "xxxxx@xxxxx.com"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri