MySQL进阶-索引(复习笔记)

2. 索引

2.1 索引概述

2.1.1 介绍

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足
特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构
上实现高级查找算法,这种数据结构就是索引。

2.1.2 演示

表结构及其数据如下:
MySQL进阶-索引(复习笔记)_第1张图片
假如我们要执行的SQL语句为 :

select * from user where age = 45;

1). 无索引情况
在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很
低。
MySQL进阶-索引(复习笔记)_第2张图片
2). 有索引情况
如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建
立一个二叉树的索引结构。
MySQL进阶-索引(复习笔记)_第3张图片
此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。

备注: 这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并
不是索引的真实结构,索引的真实结构,后面会详细介绍。

2.1.3 特点
优势 劣势
提高数据检索的效率,降低数据库的IO成本 索引列也是要占用空间的。
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗。 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE,DELETE时,效率降低。

2.2 索引结构

2.2.1 概述

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

索引结构 概述
B+Tree索引 最常见的索引类型,大部分引擎都支持 B+ 树索引
Hash索引 底层数据结构是用哈希表实现的, 只有精确匹配索引列的查询才有效, 不支持范围查询
R-tree(空间索引) 空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少
Full-text(全文索引) 是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES

上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持
情况。

索引 InnoDB MyISAM Memory
B+tree索引 支持 支持 支持
Hash索引 不支持 不支持 支持
R-tree索引 不支持 支持 不支持
Full-text 5.6版本以后支持 支持 不支持

注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。

2.2.2 二叉树

假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:
MySQL进阶-索引(复习笔记)_第4张图片
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
MySQL进阶-索引(复习笔记)_第5张图片
所以,如果选择二叉树作为索引结构,会存在以下缺点:

  • 顺序插入时,会形成一个链表,查询性能大大降低。
  • 大数据量情况下,层级较深,检索速度慢。

此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数
据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:
MySQL进阶-索引(复习笔记)_第6张图片
但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:

  • 大数据量情况下,层级较深,检索速度慢。

所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是
B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。

2.2.3 B-Tree

B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。
以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5
个指针:
MySQL进阶-索引(复习笔记)_第7张图片
知识小贴士: 树的度数指的是一个节点的子节点个数。
可以通过一个数据结构可视化的网站来简单演示一下。
https://www.cs.usfca.edu/~galles/visualization/BTree.html
image.png
插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88
120 268 250 。然后观察一些数据插入过程中,节点的变化情况。
MySQL进阶-索引(复习笔记)_第8张图片
特点:

  • 5阶的B树,每一个节点最多存储4个key,对应5个指针。
  • 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
  • 在B树中,非叶子节点和叶子节点都会存放数据。
2.2.4 B+Tree

B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(
4阶)的b+tree为例,来看一 下其结构示意图:
MySQL进阶-索引(复习笔记)_第9张图片我们可以看到,两部分:

  • 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
  • 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。

我们可以通过一个数据结构可视化的网站来简单演示一下。
操作步骤同上
插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88
120 268 250 。然后观察一些数据插入过程中,节点的变化情况。
MySQL进阶-索引(复习笔记)_第10张图片
最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:

  • 所有的数据都会出现在叶子节点。
  • 叶子节点形成一个单向链表。
  • 非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。

上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的
B+Tree。

MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点
的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。
MySQL进阶-索引(复习笔记)_第11张图片

2.2.5 Hash

MySQL中除了支持B+Tree索引,还支持一种索引类型—Hash索引。

1). 结构
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在
hash表中。
MySQL进阶-索引(复习笔记)_第12张图片
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可
以通过链表来解决。
MySQL进阶-索引(复习笔记)_第13张图片
2). 特点
A. Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,…)
B. 无法利用索引完成排序操作
C. 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索

3). 存储引擎支持
在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是
InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。

思考题: 为什么InnoDB存储引擎选择使用B+tree索引结构?
A. 相对于二叉树,层级更少,搜索效率高;
B. 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储
的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
C. 相对Hash索引,B+tree支持范围匹配及排序操作;

2.3 索引分类

2.3.1 索引分类

在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。

分类 含义 特点 关键字
主键索引 针对于表中主键创建的索引 默认自动创建, 只能有一个 PRIMARY
唯一索引 避免同一个表中某数据列中的值重复 可以有多个 UNIQUE
常规索引 快速定位特定数据 可以有多个
全文索引 全文索引查找的是文本中的关键词,而不是比较索引中的值 可以有多个 FULLTEXT

2.3.2 聚集索引&二级索引

而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类 含义 特点
聚集索引(ClusteredIndex) 将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据 必须有,而且只有一个
二级索引(SecondaryIndex) 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 可以存在多个

聚集索引选取规则:

  • 如果存在主键,主键索引就是聚集索引。
  • 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
  • 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索

引。

聚集索引和二级索引的具体结构如下:
MySQL进阶-索引(复习笔记)_第14张图片

  • 聚集索引的叶子节点下挂的是这一行的数据 。
  • 二级索引的叶子节点下挂的是该字段值对应的主键值。

接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。
MySQL进阶-索引(复习笔记)_第15张图片
具体过程如下:
①. 由于是根据name字段进行查询,所以先根据name='Arm’到name字段的二级索引中进行匹配查
找。但是在二级索引中只能查找到 Arm 对应的主键值 10。
②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最
终找到10对应的行row。
③. 最终拿到这一行的数据,直接返回即可。
回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取
数据的方式,就称之为回表查询。

思考题:
以下两条SQL语句,那个执行效率高? 为什么?
A. select * from user where id = 10 ;
B. select * from user where name = ‘Arm’ ;
备注: id为主键,name字段创建的有索引;
解答:
A 语句的执行性能要高于B 语句。
因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然
后再查询聚集索引,也就是需要进行回表查询。

思考题:
InnoDB主键索引的B+tree高度为多高呢?
MySQL进阶-索引(复习笔记)_第16张图片
假设:
一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB的指针占用6个字节的空
间,主键即使为bigint,占用字节数为8。
高度为2: n为key的个数,n+1为指针数
n * 8 + (n + 1) * 6 = 161024 , 算出n约为 1170
1171
16 = 18736
也就是说,如果树的高度为2,则可以存储 18000 多条记录。
高度为3:
1171 * 1171 * 16 = 21939856
也就是说,如果树的高度为3,则可以存储 2200w 左右的记录。

2.4 索引语法

1). 创建索引

CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (
index_col_name,... ) ;

2). 查看索引

SHOW INDEX FROM table_name ;

3). 删除索引

DROP INDEX index_name ON table_name ;

案例演示:
先来创建一张表 tb_user,并且查询测试数据。

CREATE TABLE tb_user (
	id INT PRIMARY KEY auto_increment COMMENT '主键',
	NAME VARCHAR ( 50 ) NOT NULL COMMENT '用户名',
	phone VARCHAR ( 11 ) NOT NULL COMMENT '手机号',
	email VARCHAR ( 100 ) COMMENT '邮箱',
	profession VARCHAR ( 11 ) COMMENT '专业',
	age TINYINT UNSIGNED COMMENT '年龄',
	gender CHAR ( 1 ) COMMENT '性别 , 1: 男, 2: 女',
	STATUS CHAR ( 1 ) COMMENT '状态',
	createtime datetime COMMENT '创建时间' 
) COMMENT '系统用户表';
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '吕布', '17799990000', '[email protected]', '软件工程', 23, '1', '6', '2001-02-02 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '曹操', '17799990001', '[email protected]', '通讯工程', 33, '1', '0', '2001-03-05 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '赵云', '17799990002', '[email protected]', '英语', 34, '1', '2', '2002-03-02 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '孙悟空', '17799990003', '[email protected]', '工程造价', 54, '1', '0', '2001-07-02 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '花木兰', '17799990004', '[email protected]', '软件工程', 23, '2', '1', '2001-04-22 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '大乔', '17799990005', '[email protected]', '舞蹈', 22, '2', '0', '2001-02-07 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '露娜', '17799990006', '[email protected]', '应用数学', 24, '2', '0', '2001-02-08 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '程咬金', '17799990007', '[email protected]', '化工', 38, '1', '5', '2001-05-23 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '项羽', '17799990008', '[email protected]', '金属材料', 43, '1', '0', '2001-09-18 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '白起', '17799990009', '[email protected]', '机械工程及其自动
	化', 27, '1', '2', '2001-08-16 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '韩信', '17799990010', '[email protected]', '无机非金属材料工
	程', 27, '1', '0', '2001-06-12 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '荆轲', '17799990011', '[email protected]', '会计', 29, '1', '0', '2001-05-11 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '兰陵王', '17799990012', '[email protected]', '工程造价', 44, '1', '1', '2001-04-09 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '狂铁', '17799990013', '[email protected]', '应用数学', 43, '1', '2', '2001-04-10 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '貂蝉', '17799990014', '[email protected]', '软件工程', 40, '2', '3', '2001-02-12 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '妲己', '17799990015', '[email protected]', '软件工程', 31, '2', '0', '2001-01-30 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '芈月', '17799990016', '[email protected]', '工业经济', 35, '2', '0', '2000-05-03 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '嬴政', '17799990017', '[email protected]', '化工', 38, '1', '1', '2001-08-08 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '狄仁杰', '17799990018', '[email protected]', '国际贸易', 30, '1', '0', '2007-03-12 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '安琪拉', '17799990019', '[email protected]', '城市规划', 51, '2', '0', '2001-08-15 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '典韦', '17799990020', '[email protected]', '城市规划', 52, '1', '2', '2000-04-12 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '廉颇', '17799990021', '[email protected]', '土木工程', 19, '1', '3', '2002-07-18 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '后羿', '17799990022', '[email protected]', '城市园林', 20, '1', '0', '2002-03-10 00:00:00' );
INSERT INTO tb_user ( NAME, phone, email, profession, age, gender, STATUS, createtime )
VALUES
	( '姜子牙', '17799990023', '[email protected]', '工程造价', 29, '1', '4', '2003-05-26 00:00:00' );

表结构中插入的数据如下:
MySQL进阶-索引(复习笔记)_第17张图片
数据准备好了之后,接下来,我们就来完成如下需求:
A. name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。

CREATE INDEX idx_user_name ON tb_user(name);

B. phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。

CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);

C. 为profession、age、status创建联合索引。

CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);

D. 为email建立合适的索引来提升查询效率。

CREATE INDEX idx_email ON tb_user(email);

完成上述的需求之后,我们再查看tb_user表的所有的索引数据。

show index from tb_user;

image.png

2.5 SQL性能分析

2.5.1 SQL执行频率

MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信
息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:

-- session 是查看当前会话 ;
-- global 是查询全局数据 ;
SHOW GLOBAL STATUS LIKE 'Com_______';

MySQL进阶-索引(复习笔记)_第18张图片
Com_delete: 删除次数
Com_insert: 插入次数
Com_select: 查询次数
Com_update: 更新次数
在当前数据库再执行几次查询操作,再次查看执行频次,Com_select 参数发生变化。
通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据
库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以
查询为主,那么就要考虑对数据库的索引进行优化了。

2.5.2 慢查询日志

慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有
SQL语句的日志。
MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。

SHOW VARIABLES LIKE 'slow_query_log';

image.png
1.开启慢查询日志,临时,重启mysql就会关闭

set global slow_query_log='ON'; 
set global long_query_time=1; //设置慢查询时间,执行时间超过1秒的SQL将记录到慢查询日志中

2.通过配置my.cnf(windows是my.ini)系统文件开启

# 开启慢查询功能
slow_query_log=ON
# 指定记录慢查询日志SQL执行时间得阈值
long_query_time=1
# 选填,默认数据文件路径
# slow_query_log_file=/var/lib/mysql/localhost-slow.log

重启数据库后即持久化开启慢查询。
Linux下:
要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

# 开启MySQL慢日志查询开关
slow_query_log=1
# 设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2

配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息
/var/lib/mysql/localhost-slow.log。

systemctl restart mysqld

然后,再次查看开关情况,慢查询日志就已经打开了,SHOW VARIABLES LIKE ‘slow_query_log’;。

show variables like '%slow_query_log_file%';--显示慢查询日志

测试:
A. 执行如下SQL语句 :

select * from tb_user; -- 这条SQL执行效率比较高, 执行耗时 0.00sec
select count(*) from tb_sku; -- 由于tb_sku表中, 预先存入了1000w的记录, count一次,耗时
13.35sec

MySQL进阶-索引(复习笔记)_第19张图片
B. 检查慢查询日志 :
最终我们发现,在慢查询日志中,只会记录执行时间超多我们预设时间(2s)的SQL,执行较快的SQL
是不会记录的。
MySQL进阶-索引(复习笔记)_第20张图片
那这样,通过慢查询日志,就可以定位出执行效率比较低的SQL,从而有针对性的进行优化。

2.5.3 profile详情

show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling
参数,能够看到当前MySQL是否支持profile操作:

SELECT @@have_profiling; //是否支持
SELECT @@profiling; //查询是否开启

可以通过set语句在 session/global级别开启profiling:

SET profiling = 1;

开关已经打开了,接下来,我们所执行的SQL语句,都会被MySQL记录,并记录执行时间消耗到哪儿去
了。 我们直接执行如下的SQL语句:

select * from tb_user;
select * from tb_user where id = 1;
select * from tb_user where name = '白起';
select count(*) from tb_sku;

执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:

-- 查看每一条SQL的耗时基本情况
show profiles;
-- 查看指定query_id的SQL语句各个阶段的耗时情况
show profile for query query_id;
-- 查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;

查看每一条SQL的耗时情况:
MySQL进阶-索引(复习笔记)_第21张图片
查看指定SQL各个阶段的耗时情况 :
MySQL进阶-索引(复习笔记)_第22张图片

2.5.4 explain

EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行
过程中表如何连接和连接的顺序。
语法:

-- 直接在select语句之前加上关键字 explain / desc
EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;

MySQL进阶-索引(复习笔记)_第23张图片Explain 执行计划中各个字段的含义:

字段 含义
id select查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)。
select_type 表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接 或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION 中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等
type 表示连接类型,性能由好到差的连接类型为NULL、system、const、
eq_ref、ref、range、 index、all 。
possible_key 显示可能应用在这张表上的索引,一个或多个
key 实际使用的索引,如果为NULL,则没有使用索引。
key_len 表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下, 长度越短越好 。
rows MySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的。
filtered 表示返回结果的行数占需读取行数的百分比, filtered 的值越大越好。

2.6 索引使用

2.6.1 验证索引效率

在讲解索引的使用原则之前,先通过一个简单的案例,来验证一下索引,看看是否能够通过索引来提升
数据查询性能。在演示的时候,我们还是使用之前准备的一张表 tb_sku , 在这张表中准备了1000w
的记录。
MySQL进阶-索引(复习笔记)_第24张图片
这张表中id为主键,有主键索引,而其他字段是没有建立索引的。 我们先来查询其中的一条记录,看
看里面的字段情况,执行如下SQL:

select * from tb_sku where id = 1\G;

MySQL进阶-索引(复习笔记)_第25张图片
可以看到即使有1000w的数据,根据id进行数据查询,性能依然很快,因为主键id是有索引的。 那么接
下来,我们再来根据 sn 字段进行查询,执行如下SQL:

SELECT * FROM tb_sku WHERE sn = '100000003145001';

MySQL进阶-索引(复习笔记)_第26张图片
我们可以看到根据sn字段进行查询,查询返回了一条数据,结果耗时 20.78sec,就是因为sn没有索
引,而造成查询效率很低。
那么我们可以针对于sn字段,建立一个索引,建立了索引之后,我们再次根据sn进行查询,再来看一
下查询耗时情况。
创建索引:

create index idx_sku_sn on tb_sku(sn) ;

MySQL进阶-索引(复习笔记)_第27张图片
然后再次执行相同的SQL语句,再次查看SQL的耗时。

SELECT * FROM tb_sku WHERE sn = '100000003145001';

MySQL进阶-索引(复习笔记)_第28张图片
我们明显会看到,sn字段建立了索引之后,查询性能大大提升。建立索引前后,查询耗时都不是一个数
量级的。

2.6.2 最左前缀法则

如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,
并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
以 tb_user 表为例,我们先来查看一下之前 tb_user 表所创建的索引。
show index from tb_user;
image.png
在 tb_user 表中,有一个联合索引,这个联合索引涉及到三个字段,顺序分别为:profession,
age,status。
对于最左前缀法则指的是,查询时,最左变的列,也就是profession必须存在,否则索引全部失效。
而且中间不能跳过某一列,否则该列后面的字段索引将失效。 接下来,我们来演示几组案例,看一下
具体的执行计划:

explain select * from tb_user where profession = '软件工程' and age = 31 and status
= '0';

image.png

explain select * from tb_user where profession = '软件工程' and age = 31;

image.png

explain select * from tb_user where profession = '软件工程';

image.png
以上的这三组测试中,我们发现只要联合索引最左边的字段 profession存在,索引就会生效,只不
过索引的长度不同。 而且由以上三组测试,我们也可以推测出profession字段索引长度为47、age
字段索引长度为2、status字段索引长度为5。

explain select * from tb_user where age = 31 and status = '0';

MySQL进阶-索引(复习笔记)_第29张图片

explain select * from tb_user where status = '0';

MySQL进阶-索引(复习笔记)_第30张图片
而通过上面的这两组测试,我们也可以看到索引并未生效,原因是因为不满足最左前缀法则,联合索引
最左边的列profession不存在。

explain select * from tb_user where profession = '软件工程' and status = '0';

image.png
上述的SQL查询时,存在profession字段,最左边的列是存在的,索引满足最左前缀法则的基本条
件。但是查询时,跳过了age这个列,所以后面的列索引是不会使用的,也就是索引部分生效,所以索
引的长度就是47。

思考题:
当执行SQL语句: explain select * from tb_user where age = 31 and
status = ‘0’ and profession = ‘软件工程’; 时,是否满足最左前缀法则,走不走
上述的联合索引,索引长度?image.png
可以看到,是完全满足最左前缀法则的,索引长度54,联合索引是生效的。
注意 : 最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段(即是
第一个字段)必须存在,与我们编写SQL时,条件编写的先后顺序无关

2.6.3 范围查询

联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。

explain select * from tb_user where profession = '软件工程' and age > 30 and status
= '0';

image.png
当范围查询使用> 或 < 时,走联合索引了,但是索引的长度为49,就说明范围查询右边的status字
段是没有走索引的。

explain select * from tb_user where profession = '软件工程' and age >= 30 and
status = '0';

image.png
当范围查询使用>= 或 <= 时,走联合索引了,但是索引的长度为54,就说明所有的字段都是走索引
的。
所以,在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 < 。

2.6.4 索引失效情况

2.6.4.1 索引列运算

不要在索引列上进行运算操作, 索引将失效。
在tb_user表中,除了前面介绍的联合索引之外,还有一个索引,是phone字段的单列索引。
MySQL进阶-索引(复习笔记)_第31张图片

A. 当根据phone字段进行等值匹配查询时, 索引生效。

explain select * from tb_user where phone = '17799990015';

image.png
B. 当根据phone字段进行函数运算操作之后,索引失效。

explain select * from tb_user where substring(phone,10,2) = '15';//从10,开始读两个字符

MySQL进阶-索引(复习笔记)_第32张图片

2.6.4.2 字符串不加引号

字符串类型字段使用时,不加引号,索引将失效。
接下来,我们通过两组示例,来看看对于字符串类型的字段,加单引号与不加单引号的区别:

explain select * from tb_user where profession = '软件工程' and age = 31 and status
= '0';
explain select * from tb_user where profession = '软件工程' and age = 31 and status
= 0;

MySQL进阶-索引(复习笔记)_第33张图片

explain select * from tb_user where phone = '17799990015';
explain select * from tb_user where phone = 17799990015;

MySQL进阶-索引(复习笔记)_第34张图片
经过上面两组示例,我们会明显的发现,如果字符串不加单引号,对于查询结果,没什么影响,但是数
据库存在隐式类型转换,索引将失效。

2.6.4.3 模糊查询

如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
接下来,我们来看一下这三条SQL语句的执行效果,查看一下其执行计划:
由于下面查询语句中,都是根据profession字段查询,符合最左前缀法则,联合索引是可以生效的,
我们主要看一下,模糊查询时,%加在关键字之前,和加在关键字之后的影响。

explain select * from tb_user where profession like '软件%';
explain select * from tb_user where profession like '%工程';
explain select * from tb_user where profession like '%工%';

MySQL进阶-索引(复习笔记)_第35张图片
经过上述的测试,我们发现,在like模糊查询中,在关键字后面加%,索引可以生效。而如果在关键字
前面加了%,索引将会失效。

2.6.4.4 or连接条件

用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会
被用到。

explain select * from tb_user where id = 10 or age = 23;
explain select * from tb_user where phone = '17799990017' or age = 23;

MySQL进阶-索引(复习笔记)_第36张图片
由于age没有索引,所以即使id、phone有索引,索引也会失效。所以需要针对于age也要建立索引。

然后,我们可以对age字段建立索引。

create index idx_user_age on tb_user(age);

建立了索引之后,我们再次执行上述的SQL语句,看看前后执行计划的变化。
MySQL进阶-索引(复习笔记)_第37张图片最终,我们发现,当or连接的条件,左右两侧字段都有索引时,索引才会生效。

2.6.4.5 数据分布影响

如果MySQL评估使用索引比全表更慢,则不使用索引。

explain select * from tb_user where phone >= '17799990005';
explain select * from tb_user where phone >= '17799990015';

MySQL进阶-索引(复习笔记)_第38张图片
经过测试我们发现,相同的SQL语句,只是传入的字段值不同,最终的执行计划也完全不一样,这是为
什么呢?

就是因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,**则放弃 **
索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不
如走全表扫描来的快,此时索引就会失效。

接下来,我们再来看看 is null 与 is not null 操作是否走索引。

explain select * from tb_user where profession is null;
explain select * from tb_user where profession is not null;

MySQL进阶-索引(复习笔记)_第39张图片接下来,我们做一个操作将profession字段值全部更新为null。
MySQL进阶-索引(复习笔记)_第40张图片
然后,再次执行上述的两条SQL,查看SQL语句的执行计划。
MySQL进阶-索引(复习笔记)_第41张图片最终我们看到,一模一样的SQL语句,先后执行了两次,结果查询计划是不一样的,为什么会出现这种
现象,这是和数据库的数据分布有关系。查询时MySQL会评估,走索引快,还是全表扫描快,如果全表
扫描更快,则放弃索引走全表扫描。 因此,is null 、is not null是否走索引,得具体情况具体
分析,并不是固定的。

2.6.5 SQL提示

目前tb_user表的数据情况如下:MySQL进阶-索引(复习笔记)_第42张图片
索引情况如下:
MySQL进阶-索引(复习笔记)_第43张图片
把上述的 idx_user_age, idx_email 这两个之前测试使用过的索引直接删除。

drop index idx_user_age on tb_user;
drop index idx_email on tb_user;

A. 执行SQL :

explain select * from tb_user where profession = '软件工程';

MySQL进阶-索引(复习笔记)_第44张图片查询走了联合索引。

B. 执行SQL,创建profession的单列索引:

create index idx_user_pro on tb_user(profession);

MySQL进阶-索引(复习笔记)_第45张图片
C. 创建单列索引后,再次执行A中的SQL语句,查看执行计划,看看到底走哪个索引。
image.png
测试结果,我们可以看到,possible_keys中 idx_user_pro_age_sta,idx_user_pro 这两个
索引都可能用到,最终MySQL选择了idx_user_pro_age_sta索引。这是MySQL自动选择的结果。

那么,我们能不能在查询的时候,自己来指定使用哪个索引呢? 答案是肯定的,此时就可以借助于
MySQL的SQL提示来完成。 接下来,介绍一下SQL提示。

SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优
化操作的目的。
1). use index : 建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进
行评估)。

explain select * from tb_user use index(idx_user_pro) where profession = '软件工
程';

2). ignore index : 忽略指定的索引。

explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工
程';

3). force index : 强制使用索引。

explain select * from tb_user force index(idx_user_pro) where profession = '软件工
程';

示例演示:
A. use index

explain select * from tb_user use index(idx_user_pro) where profession = '软件工
程';

image.png
B. ignore index

explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工
程';

image.png

C. force index

explain select * from tb_user force index(idx_user_pro_age_sta) where profession =
'软件工程'

image.png

2.6.6 覆盖索引

尽量使用覆盖索引,减少select *。 那么什么是覆盖索引呢? 覆盖索引是指 查询使用了索引,并
且需要返回的列,在该索引中已经全部能够找到 。

接下来,我们来看一组SQL的执行计划,看看执行计划的差别,然后再来具体做一个解析。

explain select id, profession from tb_user where profession = '软件工程' and age =
31 and status = '0' ;
explain select id,profession,age, status from tb_user where profession = '软件工程'
and age = 31 and status = '0' ;
explain select id,profession,age, status, name from tb_user where profession = '软
件工程' and age = 31 and status = '0' ;
explain select * from tb_user where profession = '软件工程' and age = 31 and status
= '0';

上述这几条SQL的执行结果为:
MySQL进阶-索引(复习笔记)_第46张图片
从上述的执行计划我们可以看到,这四条SQL语句的执行计划前面所有的指标都是一样的,看不出来差
异。但是此时,我们主要关注的是后面的Extra,前面两天SQL的结果为 Using where; Using
Index ; 而后面两条SQL的结果为: Using index condition 。

Extra 含义
Using where; Using Index 查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据
Using index condition 查找使用了索引,但是需要回表查询数据

因为,在tb_user表中有一个联合索引 idx_user_pro_age_sta,该索引关联了三个字段
profession、age、status,而这个索引也是一个二级索引,所以叶子节点下面挂的是这一行的主
键id。 所以当我们查询返回的数据在 id、profession、age、status 之中,则直接走二级索引
直接返回数据了。 如果超出这个范围,就需要拿到主键id,再去扫描聚集索引,再获取额外的数据
了,这个过程就是回表。 而我们如果一直使用select * 查询返回所有字段值,很容易就会造成回表
查询(除非是根据主键查询,此时只会扫描聚集索引)。

为了大家更清楚的理解,什么是覆盖索引,什么是回表查询,我们一起再来看下面的这组SQL的执行过
程。
MySQL进阶-索引(复习笔记)_第47张图片
id是主键,是一个聚集索引。 name字段建立了普通索引,是一个二级索引(辅助索引)。

B. 执行SQL :

select * from tb_user where id = 2;

MySQL进阶-索引(复习笔记)_第48张图片
根据id查询,直接走聚集索引查询,一次索引扫描,直接返回数据,性能高。

C. 执行SQL:

select id,name from tb_user where name = 'Arm';

MySQL进阶-索引(复习笔记)_第49张图片
虽然是根据name字段查询,查询二级索引,但是由于查询返回在字段为 id,name,在name的二级索
引中,这两个值都是可以直接获取到的,因为覆盖索引,所以不需要回表查询,性能高。

D. 执行SQL:

select id,name,gender from tb_user where name = 'Arm';

MySQL进阶-索引(复习笔记)_第50张图片
由于在name的二级索引中,不包含gender,所以,需要两次索引扫描,也就是需要回表查询,性能相
对较差一点。
思考题:
一张表, 有四个字段(id, username, password, status), 由于数据量大, 需要对
以下SQL语句进行优化, 该如何进行才是最优方案:
select id,username,password from tb_user where username =
‘itcast’;
答案: 针对于 username, password建立联合索引, sql为: create index
idx_user_name_pass on tb_user(username,password);
这样可以避免上述的SQL语句,在查询的过程中,出现回表查询。

2.6.7 前缀索引

当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让
索引变得很大,查询时,浪费大量的磁盘IO, 影响查询效率。此时可以只将字符串的一部分前缀,建
立索引,这样可以大大节约索引空间,从而提高索引效率。

1). 语法

create index idx_xxxx on table_name(column(n)) ;

示例:
为tb_user表的email字段,建立长度为5的前缀索引。

create index idx_email_5 on tb_user(email(5));

MySQL进阶-索引(复习笔记)_第51张图片
2). 前缀长度
可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,
索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。

select count(distinct email) / count(*) from tb_user ;
select count(distinct substring(email,1,5)) / count(*) from tb_user ;

3). 前缀索引的查询流程
MySQL进阶-索引(复习笔记)_第52张图片

2.6.8 单列索引与联合索引

单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。

我们先来看看 tb_user 表中目前的索引情况:
MySQL进阶-索引(复习笔记)_第53张图片
在查询出来的索引中,既有单列索引,又有联合索引。
接下来,我们来执行一条SQL语句,看看其执行计划:
image.png
通过上述执行计划我们可以看出来,在and连接的两个字段 phone、name上都是有单列索引的,但是
最终mysql只会选择一个索引,也就是说,只能走一个字段的索引,此时是会回表查询的。

紧接着,我们再来创建一个phone和name字段的联合索引来查询一下执行计划。

create unique index idx_user_phone_name on tb_user(phone,name);

image.png
此时,查询时,就走了联合索引,而在联合索引中包含 phone、name的信息,在叶子节点下挂的是对
应的主键id,所以查询是无需回表查询的。

在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,
而非单列索引。
如果查询使用的是联合索引,具体的结构示意图如下:
MySQL进阶-索引(复习笔记)_第54张图片

2.7 索引设计原则

1). 针对于数据量较大,且查询比较频繁的表建立索引。
2). 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索
引。
3). 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
4). 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
5). 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,
避免回表,提高查询效率。
6). 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增
删改的效率。
7). 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含
NULL值时,它可以更好地确定哪个索引最有效地用于查询。

你可能感兴趣的:(mysql,数据库,java)