【并发编程】【18】【共享模型之工具】JUC Semaphore CountDownLatch CyclicBarrier 线程安全集合类

8. 共享模型之工具

8.2 J.U.C

4. Semaphore

基本使用

[ˈsɛməˌfɔr] 信号量,用来限制能同时访问共享资源的线程上限。

public static void main(String[] args) {
    // 1. 创建 semaphore 对象
    Semaphore semaphore = new Semaphore(3);
    
    // 2. 10个线程同时运行
    for (int i = 0; i < 10; i++) {
        new Thread(() -> {
            // 3. 获取许可
            try {
                semaphore.acquire();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            try {
                log.debug("running...");
                sleep(1);
                log.debug("end...");
            } finally {
                // 4. 释放许可
                semaphore.release();
            }
        }).start();
    }
}

输出

07:35:15.485 c.TestSemaphore [Thread-2] - running... 
07:35:15.485 c.TestSemaphore [Thread-1] - running... 
07:35:15.485 c.TestSemaphore [Thread-0] - running... 
07:35:16.490 c.TestSemaphore [Thread-2] - end... 
07:35:16.490 c.TestSemaphore [Thread-0] - end... 
07:35:16.490 c.TestSemaphore [Thread-1] - end... 
07:35:16.490 c.TestSemaphore [Thread-3] - running... 
07:35:16.490 c.TestSemaphore [Thread-5] - running... 
07:35:16.490 c.TestSemaphore [Thread-4] - running... 
07:35:17.490 c.TestSemaphore [Thread-5] - end... 
07:35:17.490 c.TestSemaphore [Thread-4] - end... 
07:35:17.490 c.TestSemaphore [Thread-3] - end... 
07:35:17.490 c.TestSemaphore [Thread-6] - running... 
07:35:17.490 c.TestSemaphore [Thread-7] - running... 
07:35:17.490 c.TestSemaphore [Thread-9] - running... 
07:35:18.491 c.TestSemaphore [Thread-6] - end... 
07:35:18.491 c.TestSemaphore [Thread-7] - end... 
07:35:18.491 c.TestSemaphore [Thread-9] - end... 
07:35:18.491 c.TestSemaphore [Thread-8] - running... 
07:35:19.492 c.TestSemaphore [Thread-8] - end...
*Semaphore 应用
2. 限制对共享资源的使用

semaphore 实现

  • 使用 Semaphore 限流,在访问高峰期时,让请求线程阻塞,高峰期过去再释放许可,当然它只适合限制单机线程数量,并且仅是限制线程数,而不是限制资源数(例如连接数,请对比 Tomcat LimitLatch 的实现)

  • 用 Semaphore 实现简单连接池,对比『享元模式』下的实现(用wait notify),性能和可读性显然更好,注意下面的实现中线程数和数据库连接数是相等的

@Slf4j(topic = "c.Pool")
class Pool {
    // 1. 连接池大小
    private final int poolSize;
    // 2. 连接对象数组
    private Connection[] connections;
    // 3. 连接状态数组 0 表示空闲, 1 表示繁忙
    private AtomicIntegerArray states;
    private Semaphore semaphore;
    // 4. 构造方法初始化
    public Pool(int poolSize) {
        this.poolSize = poolSize;
        // 让许可数与资源数一致
        this.semaphore = new Semaphore(poolSize);
        this.connections = new Connection[poolSize];
        this.states = new AtomicIntegerArray(new int[poolSize]);
        for (int i = 0; i < poolSize; i++) {
            connections[i] = new MockConnection("连接" + (i+1));
        }
    }
    // 5. 借连接
    public Connection borrow() {// t1, t2, t3
        // 获取许可
        try {
            semaphore.acquire(); // 没有许可的线程,在此等待
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        for (int i = 0; i < poolSize; i++) {
            // 获取空闲连接
            if(states.get(i) == 0) {
                if (states.compareAndSet(i, 0, 1)) {
                    log.debug("borrow {}", connections[i]);
                    return connections[i];
                }
            }
        }
        // 不会执行到这里
        return null;
    }
    // 6. 归还连接
    public void free(Connection conn) {
        for (int i = 0; i < poolSize; i++) {
            if (connections[i] == conn) {
                states.set(i, 0);
                log.debug("free {}", conn);
                semaphore.release();
                break;
            }
        }
    }
}
* Semaphore 原理
1. 加锁解锁流程

Semaphore 有点像一个停车场,permits 就好像停车位数量,当线程获得了 permits 就像是获得了停车位,然后停车场显示空余车位减一

刚开始,permits(state)为 3,这时 5 个线程来获取资源

【并发编程】【18】【共享模型之工具】JUC Semaphore CountDownLatch CyclicBarrier 线程安全集合类_第1张图片

假设其中 Thread-1,Thread-2,Thread-4 cas 竞争成功,而 Thread-0 和 Thread-3 竞争失败,进入 AQS 队列park 阻塞

【并发编程】【18】【共享模型之工具】JUC Semaphore CountDownLatch CyclicBarrier 线程安全集合类_第2张图片

这时 Thread-4 释放了 permits,状态如下

【并发编程】【18】【共享模型之工具】JUC Semaphore CountDownLatch CyclicBarrier 线程安全集合类_第3张图片

接下来 Thread-0 竞争成功,permits 再次设置为 0,设置自己为 head 节点,断开原来的 head 节点,unpark 接下来的 Thread-3 节点,但由于 permits 是 0,因此 Thread-3 在尝试不成功后再次进入 park 状态

【并发编程】【18】【共享模型之工具】JUC Semaphore CountDownLatch CyclicBarrier 线程安全集合类_第4张图片

2. 源码分析
static final class NonfairSync extends Sync {
    private static final long serialVersionUID = -2694183684443567898L;
    NonfairSync(int permits) {
        // permits 即 state
        super(permits);
    }

    // Semaphore 方法, 方便阅读, 放在此处
    public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquireSharedInterruptibly(int arg)
        throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

    // 尝试获得共享锁
    protected int tryAcquireShared(int acquires) {
        return nonfairTryAcquireShared(acquires);
    }

    // Sync 继承过来的方法, 方便阅读, 放在此处
    final int nonfairTryAcquireShared(int acquires) {
        for (;;) {
            int available = getState();
            int remaining = available - acquires; 
            if (
                // 如果许可已经用完, 返回负数, 表示获取失败, 进入 doAcquireSharedInterruptibly
                remaining < 0 ||
                // 如果 cas 重试成功, 返回正数, 表示获取成功
                compareAndSetState(available, remaining)
            ) {
                return remaining;
            }
        }
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    // 再次尝试获取许可
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        // 成功后本线程出队(AQS), 所在 Node设置为 head
                        // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
                        // 如果 head.waitStatus == 0 ==> Node.PROPAGATE 
                        // r 表示可用资源数, 为 0 则不会继续传播
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                // 不成功, 设置上一个节点 waitStatus = Node.SIGNAL, 下轮进入 park 阻塞
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    // Semaphore 方法, 方便阅读, 放在此处
    public void release() {
        sync.releaseShared(1);
    }

    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryReleaseShared(int releases) {
        for (;;) {
            int current = getState();
            int next = current + releases;
            if (next < current) // overflow
                throw new Error("Maximum permit count exceeded");
            if (compareAndSetState(current, next))
                return true;
        }
    }
}

5. CountdownLatch(倒计时锁)

用来进行线程同步协作,等待所有线程完成倒计时。

其中构造参数用来初始化等待计数值,await() 用来等待计数归零,countDown() 用来让计数减一

public static void main(String[] args) throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(3);
    
    new Thread(() -> {
        log.debug("begin...");
        sleep(1);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    }).start();
    
    new Thread(() -> {
        log.debug("begin...");
        sleep(2);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    }).start();
    
    new Thread(() -> {
        log.debug("begin...");
        sleep(1.5);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    }).start();
    
    log.debug("waiting...");
    latch.await();
    log.debug("wait end...");
}

输出

18:44:00.778 c.TestCountDownLatch [main] - waiting... 
18:44:00.778 c.TestCountDownLatch [Thread-2] - begin... 
18:44:00.778 c.TestCountDownLatch [Thread-0] - begin... 
18:44:00.778 c.TestCountDownLatch [Thread-1] - begin... 
18:44:01.782 c.TestCountDownLatch [Thread-0] - end...2 
18:44:02.283 c.TestCountDownLatch [Thread-2] - end...1 
18:44:02.782 c.TestCountDownLatch [Thread-1] - end...0 
18:44:02.782 c.TestCountDownLatch [main] - wait end...

可以配合线程池使用,改进如下

public static void main(String[] args) throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(3);
    ExecutorService service = Executors.newFixedThreadPool(4);
    
    service.submit(() -> {
        log.debug("begin...");
        sleep(1);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    });
    
    service.submit(() -> {
        log.debug("begin...");
        sleep(1.5);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    });
    
    service.submit(() -> {
        log.debug("begin...");
        sleep(2);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    });
    
    service.submit(()->{
        try {
            log.debug("waiting...");
            latch.await();
            log.debug("wait end...");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
}

输出

18:52:25.831 c.TestCountDownLatch [pool-1-thread-3] - begin... 
18:52:25.831 c.TestCountDownLatch [pool-1-thread-1] - begin... 
18:52:25.831 c.TestCountDownLatch [pool-1-thread-2] - begin... 
18:52:25.831 c.TestCountDownLatch [pool-1-thread-4] - waiting... 
18:52:26.835 c.TestCountDownLatch [pool-1-thread-1] - end...2 
18:52:27.335 c.TestCountDownLatch [pool-1-thread-2] - end...1 
18:52:27.835 c.TestCountDownLatch [pool-1-thread-3] - end...0 
18:52:27.835 c.TestCountDownLatch [pool-1-thread-4] - wait end...
* 应用之同步等待多线程准备完毕
AtomicInteger num = new AtomicInteger(0);
ExecutorService service = Executors.newFixedThreadPool(10, (r) -> {
    return new Thread(r, "t" + num.getAndIncrement());
});
CountDownLatch latch = new CountDownLatch(10);
String[] all = new String[10];
Random r = new Random();
for (int j = 0; j < 10; j++) {
    int x = j;
    service.submit(() -> {
        for (int i = 0; i <= 100; i++) {
            try {
                Thread.sleep(r.nextInt(100));
            } catch (InterruptedException e) {
            }
            all[x] = Thread.currentThread().getName() + "(" + (i + "%") + ")";
            System.out.print("\r" + Arrays.toString(all));
        }
        latch.countDown();
    });
}
latch.await();
System.out.println("\n游戏开始...");
service.shutdown();

中间输出

[t0(52%), t1(47%), t2(51%), t3(40%), t4(49%), t5(44%), t6(49%), t7(52%), t8(46%), t9(46%)]

最后输出

[t0(100%), t1(100%), t2(100%), t3(100%), t4(100%), t5(100%), t6(100%), t7(100%), t8(100%), 
t9(100%)] 
游戏开始...
* 应用之同步等待多个远程调用结束
@RestController
public class TestCountDownlatchController {
    @GetMapping("/order/{id}")
    public Map<String, Object> order(@PathVariable int id) {
        HashMap<String, Object> map = new HashMap<>();
        map.put("id", id);
        map.put("total", "2300.00");
        sleep(2000);
        return map;
    }
    
    @GetMapping("/product/{id}")
    public Map<String, Object> product(@PathVariable int id) {
        HashMap<String, Object> map = new HashMap<>();
        if (id == 1) {
            map.put("name", "小爱音箱");
            map.put("price", 300);
        } else if (id == 2) {
            map.put("name", "小米手机");
            map.put("price", 2000);
        }
        map.put("id", id);
        sleep(1000);
        return map;
    }
    
    @GetMapping("/logistics/{id}")
    public Map<String, Object> logistics(@PathVariable int id) {
        HashMap<String, Object> map = new HashMap<>();
        map.put("id", id);
        map.put("name", "中通快递");
        sleep(2500);
        return map;
    }
    
    private void sleep(int millis) {
        try {
            Thread.sleep(millis);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

rest 远程调用

RestTemplate restTemplate = new RestTemplate();
log.debug("begin");
ExecutorService service = Executors.newCachedThreadPool();
CountDownLatch latch = new CountDownLatch(4);

Future<Map<String,Object>> f1 = service.submit(() -> {
    Map<String, Object> r =
        restTemplate.getForObject("http://localhost:8080/order/{1}", Map.class, 1);
    return r;
});

Future<Map<String, Object>> f2 = service.submit(() -> {
    Map<String, Object> r =
        restTemplate.getForObject("http://localhost:8080/product/{1}", Map.class, 1);
    return r;
});

Future<Map<String, Object>> f3 = service.submit(() -> {
    Map<String, Object> r =
        restTemplate.getForObject("http://localhost:8080/product/{1}", Map.class, 2);
    return r;
});

Future<Map<String, Object>> f4 = service.submit(() -> {
    Map<String, Object> r =
        restTemplate.getForObject("http://localhost:8080/logistics/{1}", Map.class, 1);
    return r;
});

System.out.println(f1.get());
System.out.println(f2.get());
System.out.println(f3.get());
System.out.println(f4.get());
log.debug("执行完毕");
service.shutdown();

执行结果(有返回值的多线程用Future更方便,CountDownLatch更适合无返回值的多线程同步

19:51:39.711 c.TestCountDownLatch [main] - begin 
{total=2300.00, id=1} 
{price=300, name=小爱音箱, id=1} 
{price=2000, name=小米手机, id=2} 
{name=中通快递, id=1} 
19:51:42.407 c.TestCountDownLatch [main] - 执行完毕

6. CyclicBarrier

[ˈsaɪklɪk ˈbæriɚ] 循环栅栏,用来进行线程协作,等待线程满足某个计数。构造时设置『计数个数』,每个线程执行到某个需要“同步”的时刻调用 await() 方法进行等待,当等待的线程数满足『计数个数』时,继续执行

CyclicBarrier cb = new CyclicBarrier(2, () -> {
    log.debug("task1, task2 finish...")
}); // 个数为2时才会继续执行

new Thread(()->{
    System.out.println("线程1开始.."+new Date());
    try {
        cb.await(); // 当个数不足时,等待
    } catch (InterruptedException | BrokenBarrierException e) {
        e.printStackTrace();
    }
    System.out.println("线程1继续向下运行..."+new Date());
}).start();

new Thread(()->{
    System.out.println("线程2开始.."+new Date());
    try { Thread.sleep(2000); } catch (InterruptedException e) { }
    try {
        cb.await(); // 2 秒后,线程个数够2,继续运行
    } catch (InterruptedException | BrokenBarrierException e) {
        e.printStackTrace();
    }
    System.out.println("线程2继续向下运行..."+new Date());
}).start();

注意 CyclicBarrier 与 CountDownLatch 的主要区别在于 CyclicBarrier 是可以重用的 CyclicBarrier 可以被比喻为『人满发车』

线程池数与CyclicBarrier参数1一致,不然得不到我们想要的效果

public static void main(String[] args) {
    ExecutorService service = Executors.newFixedThreadPool(2);
    CyclicBarrier barrier = new CyclicBarrier(2, ()-> {
        log.debug("task1, task2 finish...");
    });

    for (int i = 0; i < 3; i++) { // task1  task2  task1
        service.submit(() -> {
            log.debug("task1 begin...");
            sleep(1);
            try {
                barrier.await(); // 2-1=1
            } catch (InterruptedException | BrokenBarrierException e) {
                e.printStackTrace();
            }
        });
        service.submit(() -> {
            log.debug("task2 begin...");
            sleep(2);
            try {
                barrier.await(); // 1-1=0
            } catch (InterruptedException | BrokenBarrierException e) {
                e.printStackTrace();
            }
        });
    }
    
    service.shutdown();
}

7. 线程安全集合类概述

【并发编程】【18】【共享模型之工具】JUC Semaphore CountDownLatch CyclicBarrier 线程安全集合类_第5张图片

线程安全集合类可以分为三大类:

  • 遗留的线程安全集合如 Hashtable , Vector

  • 使用 Collections 装饰的线程安全集合,如:(装饰器模式)

    • Collections.synchronizedCollection
    • Collections.synchronizedList
    • Collections.synchronizedMap
    • Collections.synchronizedSet
    • Collections.synchronizedNavigableMap
    • Collections.synchronizedNavigableSet
    • Collections.synchronizedSortedMap
    • Collections.synchronizedSortedSet
  • java.util.concurrent.*

重点介绍 java.util.concurrent.* 下的线程安全集合类,可以发现它们有规律,里面包含三类关键词:Blocking、CopyOnWrite、Concurrent

  • Blocking 大部分实现基于锁,并提供用来阻塞的方法(不满足条件阻塞,一般使用ReentrantLock实现)

  • CopyOnWrite 之类容器修改开销相对较重(修改时拷贝,适用于读多写少的场景)

  • Concurrent 类型的容器**(建议使用)**

    • 内部很多操作使用 cas 优化,一般可以提供较高吞吐量
    • 弱一致性
      • 遍历时弱一致性,例如,当利用迭代器遍历时,如果容器发生修改,迭代器仍然可以继续进行遍历,这时内容是旧的
      • 求大小弱一致性,size 操作未必是 100% 准确
      • 读取弱一致性

遍历时如果发生了修改,对于非安全容器(集合)来讲,使用 fail-fast(相反概念 fail-safe ) 机制也就是让遍历立刻失败,抛出ConcurrentModifificationException,不再继续遍历

你可能感兴趣的:(JUC,java,jvm,开发语言)