- vue | 插值表达式
jingling1007
前端vue.js前端javascript
Vue是一个用于构建用户界面的渐进式框架1.构建用户界面:基于数据动态渲染页面2.渐进式:循序渐进的学习3.框架:一套完整的项目解决方案,提升开发效率↑(理解记忆规则)插值表达式:插值表达式是一种Vue的模板语法1.作用:利用表达式进行插值,渲染到页面中表达式:是可以被求值的代码,JS引擎会将其计算出一个结果2.语法格式?{{表达式}}3.插值表达式的注意点:①使用的数据要存在(data)②支持的
- 厉害了,LSTM+Transformer王炸创新,精准度又高了!
马拉AI
LSTMtransformer
【LSTM+Transformer】作为一种混合深度学习模型,近年来在学术界和工业界都受到了极大的关注。它巧妙地融合了长短期记忆网络(LSTM)在处理时序数据方面的专长和Transformer在捕捉长距离依赖关系上的优势,从而在文本生成、机器翻译、时间序列预测等多个领域取得了突破性的进展。这种创新的结合不仅提升了模型的预测精度,还优化了性能和训练效率,使其在序列分析任务中展现出卓越的能力。例如,最
- Django几条命令,一定要牢记(Python学习笔记)
代码帮
Python教程Pythondjango
Django项目搭建流程流程(切记使用中文)安装包安装下载安装包,解压运行pythonsetup.pyinstall命令安装python-mpipinstalldjango新建一个djangoprojectdjango-admin.pystartprojectproject_name特别是在windows上;如果报错,尝试用django-admin代替django-admin.py试试JetBra
- Python测试框架 Pytest —— mock使用(pytest-mock)_python pytest mock数据
2401_84263262
2024年程序员学习pythonpytest开发语言
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新软件测试全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,
- Python与.NET:10步教你轻松实现跨语言互操作,你准备好了吗?
墨瑾轩
Python一起学学C#【三】python.net开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣在这个多语言编程的时代,Python和.NET各自拥有独特的魅力。Python以其简洁易读的语法著称,而.NET则凭借其强大的性能和丰富的库支持赢得了众多开发者的心。那么问题来了,如何让这两者携手共舞呢?答案就是PythonNet!它就像是连接两个世界的桥梁,
- 构建高效GPU算力平台:挑战、策略与未来展望
Mr' 郑
gpu算力
引言随着深度学习、高性能计算和大数据分析等领域的快速发展,GPU(图形处理器)因其强大的并行计算能力和浮点运算速度而成为首选的计算平台。然而,随着模型规模的增长和技术的进步,构建高效稳定的GPU算力平台面临着新的挑战。本文旨在探讨这些挑战、应对策略以及对未来发展的展望。当前挑战算力分配与资源优化在多用户共享GPU集群的环境下,合理分配计算资源并确保每个任务能够高效运行是一项挑战。这不仅涉及到硬件资
- 详解深度学习中的Dropout
nk妹妹
深度学习深度学习人工智能
Dropout是一种在神经网络训练中常用的正则化技术,其操作是在每次训练迭代中随机“丢弃”一部分神经元(即将其输出置为零)。以下是对这一操作的详细解释:一、基本思想Dropout的基本思想是减少神经元之间的复杂共适应关系,迫使网络在训练过程中不依赖于特定的神经元子集。这有助于增加模型的泛化能力,防止过拟合。二、具体实现随机选择:在每次训练迭代中,以一定的概率p(通常设定为0.2到0.5之间)随机选
- ACL实验
把梦想藏在蘑菇里
网络ACL访问控制列表
理论基础标准访问控制列表:基于IP地址过滤数据包,访问控制列表号2000-2999扩展访问控制列表:基于源IP地址、目的IP地址、指定协议、端口和标志来过滤数据包命名访问控制列表:允许在标准和扩展访问控制列表中使用名称代替表号实验目的学习ACL;学习ACL规则的编写与端口的调用;学习ACL基础配置实验环境实验需求全网互通用ACL标准列表禁止vlan10和vlan20通信用ACL扩展列表禁止AR3访
- Python学习之-Pydantic详解
夏天Aileft
Pythonpython学习Pydantic
前言:Pydantic是一个Python库,用于数据解析和验证。它主要基于Python类型提示来实现数据的校验和设定限制条件。在Pydantic中,BaseModel是一个核心基类,用于创建数据模型。1BaseModel的主要作用包括:数据验证(Validation):BaseModel类提供了自动数据验证的功能。当你创建一个基于BaseModel的子类并且为其字段添加类型注解(typeannot
- Web3.0开发路线
king-agic
前沿技术web3
Web3.0开发是一个不断演进的领域,涉及到区块链技术、去中心化应用(DApps)、智能合约等多个方面。阶段一:Web3基础知识与区块链原理目标:理解Web3与区块链的基本概念、发展历程与价值主张。掌握区块链的核心原理,包括分布式账本、共识机制、加密算法、智能合约等。学习内容:Web3概述:起源、愿景、与Web2的区别。区块链基础:区块、链式结构、哈希、公钥/私钥、UTXO模型、账户模型等。共识机
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- OSPF(1):基础知识与数据包、状态机、工作过程
小度爱学习
网络安全从小白到大神网络
引言上一篇我们学习了RIP:RIP基础知识与配置,可是通过学习,我们发现RIP似乎只能运用在中小型网络中,那么中大型网络应该怎么做呢?这一篇博客我们就来学习OSPFOSPF---开放式最短路径优先协议动态路由优势评价维度:选路佳,收敛快,占用资源少RIP与OSPF比较1.OSPF本身是链路状态型协议,所以计算出的路径不会存在环路,并且使用带宽作为选路依据,所以,OSPF在选路的角度上优于RIP;2
- OSPF(2):基础配置、拓展配置
小度爱学习
网络安全从小白到大神网络
引言在前面的学习中我们知道了ospf的基础理论知识:ospf(1),那么这一节我们就来继续学习ospf的配置吧,而在本节我们的学习将基于以下这张图来讲解配置命令:R1、R2、R3都有一个环回接口,分别为1.1.1.1、2.2.2.2、3.3.3.3,每个物理接口的IP地址如图。由于在前面几篇内容中我们已经详细的介绍过如何配置IP地址了,所以本篇内容不再做详细展示,不会的同学可以点击参考之前的博客:
- 深度强化学习(DRL)原理与代码实战案例讲解
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的演进:从符号主义到连接主义人工智能(AI)的发展经历了漫长的历程,从早期的符号主义到如今的连接主义,标志着人工智能从基于规则的推理演变到基于数据的学习。符号主义AI试图通过逻辑和符号系统来模拟人类的思维过程,而连接主义AI则侧重于构建类似于人脑神经网络的结构,通过大量数据进行训练,从而实现智能。1.2强化学习:智能体与环境的互动强化学习(ReinforcementLea
- 全面解读 Databricks:从架构、引擎到优化策略
克里斯蒂亚诺罗纳尔多阿维罗
架构spark大数据
导语:Databricks是一家由ApacheSpark创始团队成员创立的公司,同时也是一个统一分析平台,帮助企业构建数据湖与数据仓库一体化(Lakehouse)的架构。在Databricks平台上,数据工程、数据科学与数据分析团队能够协作使用Spark、DeltaLake、MLflow等工具高效处理数据与构建机器学习应用。本文将深入介绍Databricks的平台概念、架构特点、优化机制、功能特性
- 立足西安,昇腾AI为开发者留下了脚印一串
科技前沿资讯
人工智能
“人工智能的时代,我能够成为推动世界发展的一支桨吗?”“我爱西安这座城市,而且在学校学习了那么多与IT开发相关的课程,未来我很希望能留在西安发展。”西安电子科技大学计算机学院的几名学生如是对笔者说。每个人在学校里都会有迷茫,不论你所学是什么,只有站在当下,脚踏实地方可仰望苍穹。他们也是如此,面对智能时代的变数,他们渴望去做更多的尝试。4月23日,以“创未来,享非凡”为主题的昇腾AI开发者创享日首站
- AI歌手会成为主流吗?
网络安全我来了
IT技术人工智能
AI歌手会成为主流吗?在如今这个科技迅猛发展的时代,AI歌手渐渐走入我们的视野。或许你会想,AI真的能够唱歌,它的歌声能与真实歌手相媲美吗?让我们一起探索这个引人入胜的主题,看看AI歌手的发展现状、优缺点,以及它在音乐行业的未来前景。1.AI歌手的发展现状1.1技术背景我们处于一个机器学习和深度学习技术飞速发展的时代,AI歌手的诞生并非偶然。通过收集和分析大量的音乐数据,AI能够学习并模仿特定歌手
- 【机器学习:三十二、强化学习:理论与应用】
KeyPan
机器学习机器学习机器人人工智能深度学习数据挖掘
1.强化学习概述**强化学习(ReinforcementLearning,RL)**是一种机器学习方法,旨在通过试验与反馈的交互,使智能体(Agent)在动态环境中学习决策策略,以最大化累积奖励(CumulativeReward)。相比监督学习和无监督学习,强化学习更关注长期目标,而非简单地从标签中学习。核心概念智能体(Agent):进行学习和决策的主体。环境(Environment):智能体所在
- 【机器学习:二十七、决策树集合】
KeyPan
机器学习机器学习决策树人工智能数据挖掘深度学习算法分类
1.决策树集合的概述决策树集合是一种基于多个决策树模型集成的机器学习方法,通过组合多个弱学习器(决策树)形成一个强学习器,显著提升预测性能和泛化能力。核心思想集成学习的核心是通过结合多个模型的优点,降低单个模型的偏差与方差,提高整体的准确性和鲁棒性。决策树集合利用多棵树的组合,减少了单棵树可能出现的过拟合或对噪声的敏感性。主要优势性能提升:在分类和回归任务中通常表现优于单独的决策树。稳定性更强:对
- 学习AI大模型的小白入门建议和具体的学习方法推荐
aFakeProgramer
机器学习人工智能人工智能
深度思考我是一名在汽车行业工作的嵌入式系统工程师,现在我想进入人工智能领域,特别是大型语言模型。说到人工智能,我是一个完全的新手,所以我需要弄清楚从哪里开始。让我们把它分解一下。首先,我知道嵌入式系统涉及许多低级编程、微控制器、实时操作系统等。人工智能,特别是像GPT这样的大型模型,似乎处于另一端,处理高级计算、海量数据集和复杂算法。这里肯定有一个学习曲线。我可能应该从了解机器学习的基础知识开始。
- 机器学习——认识有监督学习与无监督学习
伊一大数据&人工智能学习日志
机器学习机器学习学习人工智能
目录有监督学习与无监督学习有监督学习无监督学习监督学习与无监督学习的区别有监督学习与无监督学习有监督学习和无监督学习是机器学习中的两种主要学习方式,它们的主要区别在于数据的标注情况和学习的目标。有监督学习有监督学习中,数据集中的每个样本都有明确的标签或目标输出。学习的目标是通过对有标签数据的学习,建立输入特征和输出标签之间的映射关系,以便能够对新的、未见过的输入数据预测其相应的输出标签。常见的有监
- 数据增强方法及其工具
cxr828
大数据
数据增强(DataAugmentation)是指在训练深度学习模型时,通过对现有数据进行一系列变换,从而生成新的样本。数据增强有助于增加数据的多样性,减少过拟合,提升模型的泛化能力,尤其是在数据量有限的情况下。数据增强可以应用于图像、文本、音频等多种类型的数据。以下是一些常见的、简单易行的图像数据增强方法及其具体实现步骤,这些方法也可以广泛应用于目标检测、图像分类、图像分割等任务。一、图像数据增强
- 基于深度学习CNN网络 mini-xception网络实现 构建一个完整的人脸表情检测_识别分类系统,包括训练、评估、前端和服务端代码
计算机c9硕士算法工程师
卷积神经网络深度学习cnn分类
人脸表情检测该项目已训练好网络模型,配置好环境即可运行使用,效果见图像,实现图像识别、摄像头识别、摄像头识别/识别分类项目-说明文档-UI界面-cnn网络项目基本介绍:【网络】深度学习CNN网络mini-xception网络【环境】python>=3.5tensorflow2opencvpyqt5【文件】训练预测全部源代码、训练好的模型、fer2013数据集、程序算法讲解文档【类别】对7种表情检测
- AI技术架构:从基础设施到应用
fuqinyijiu
AI人工智能架构
人工智能(AI)的发展,正以前所未有的速度重塑我们的世界。了解AI技术架构,不仅能帮助我们看懂AI的底层逻辑,还能掌握其对各行业变革的潜力与方向。一、基础设施层:AI技术的坚实地基基础设施层是AI技术架构的“地基”,为整个系统提供计算能力和存储保障。没有强大的基础设施,复杂的AI模型和应用无法落地。1.GPU(图形处理单元):并行计算的核心GPU是深度学习的核心引擎,专为大规模并行计算设计。技术优
- 单层感知机----或门实现
翔翔子1号
文章目录一、前言---感知机二、实现过程1.引入库2.或门真值表-训练集数据3.建立model,初始化定义权重、偏置、学习率4.前向传播定义5.训练过程(更新权重和偏置)6.训练模型一、前言—感知机感知机(Perceptron)模型是由美国心理学家弗兰克罗森布拉特于1957年提出的一种具有单层计算单元的神经网络。这个模型旨在建立一个线性超平面来解决线性可分问题,就如我们现在的或门分类。二、实现过程
- 关于大规模实时数仓搭建,我有几条心得...
闲鱼技术
大数据数据分析java编程语言人工智能
现状闲鱼作为一款闲置交易APP,在二手交易市场中是当之无愧的佼佼者。闲鱼从2014年诞生到现在七整年间持续增长,在这高速增长的背后带来的是每天近百亿的曝光点击浏览等数据,在这些数据规模如此庞大的背后也会带来诸多关于实时性的问题:•用户反馈商品曝光异常,如何快速定位?•产品同学圈了一批商品,如何查看该样本的实时报表?•发现问题总是晚一步,如何在第一时间获取自定义的预警信息?•......为了解决上述
- 大模型-Qwen2.5 技术报告解读
数据分析能量站
机器学习人工智能
Abstract主要是在介绍通义千问2.5(Qwen2.5)这一大型语言模型系列,涵盖了它在不同训练阶段的改进、多样化配置、可获取途径以及在各项性能评测中的出色表现等多个方面,旨在展示其先进性与实用性。训练阶段改进预训练阶段说明了Qwen2.5在预训练时对数据集进行了大规模的扩充,将高质量预训练数据集的词元数量从之前的7万亿提升到了18万亿。词元可以理解为语言模型学习时的基本语言单位(比如单词、汉
- 第八讲 SPU密态引擎
huang8666
数据分析
第八讲SPU密态引擎为什么做SPU?模型对用户加密提示词对公司加密同时保护模型和提示词为什么要隐私计算?数据是敏感的数据是重要的技术路线:多方安全计算同态加密差分隐私可信硬件挑战:易用性差,性能差需要:原生AI框架支持,编译器运行时协同优化SPU简介前端:支持主流AI前端,降低学习成本,复用AI前端能力编译器:隐私保护领域IR,复用AI编译器部分优化,加密计算的优化运行时:指令并行,数据并行,多种
- 25.1.17学习内容
The_cute_cat
学习
B-迷宫Description给定一个N×M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。给定起点坐标和终点坐标,每个方格最多经过一次,问有多少种从起点坐标到终点坐标的方案。Input第一行为三个正整数N,M,T,分别表示迷宫的长宽和障碍总数。第二行为四个正整数SX,SY,FX,FY,SX,SY代表起点坐标,FX,FY代
- .NET 学习:从基础到进阶的全面指南
来恩1003
.NET.net学习
.NET学习资料.NET学习资料.NET学习资料在当今软件开发的广阔领域中,.NET是一个备受瞩目的开发平台,以其强大的功能、跨平台的特性以及丰富的生态系统,吸引着众多开发者投身其中。无论是构建企业级应用、Web应用还是移动应用,.NET都展现出了卓越的能力。以下将为你详细介绍.NET的学习路径,帮助你从入门逐步走向精通。一、认识.NET:基础概念与环境搭建了解.NET框架:.NET是一个由微软开
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo