docker容器虚拟化网络

docker容器虚拟化

  • docker的网络模式
  • 虚拟化网络
  • 单节点容器间通信
  • 不同节点容器间通信

docker的网络模式

相对Kubernetes,Docker的网络模型要相对简单很多。但也最适合我们来充分理解前面介绍的各类网络虚拟化的基础技术。

Docker 提供的三种开箱即用的网络方案:

桥接模式(默认)

为每个容器创建veth pair,同时主机上有一个Linux bridge,同一个主机上容器二层网络联通bridge,但不解决主机间网络通信,Linux bridge可以设置IP充当路由器角色,所以可以配置做到容器访问主机设备和外部网络。

主机模式

该模式下,Docker 不会为新容器创建独立的网络名称空间,这样容器一切的网络设施,如网卡、网络栈等都直接使用宿主机上的真实设施,容器也就不会拥有自己独立的 IP 地址。此模式下与外界通信无须进行 NAT 转换,没有性能损耗,但缺点也十分明显,没有隔离就无法避免网络资源的冲突,譬如端口号不允许重复。

说白了,这种模式容器直接复用的主机网卡、主机网络,性能损耗最低,但达不到容器隔离的目的。

空模式

Docker 会给新容器创建独立的网络名称空间,但是不会创建任何虚拟的网络设备,此时容器能看到的只有一个回环设备(Loopback Device)而已。提供这种方式是为了方便用户去做自定义的网络配置,如自己增加网络设备、自己管理 IP 地址,等等。

由此,一般可以定制网络模式。有如下几种:

容器模式

多个容器共享一个容器网络,本质上是加入同一个网络空间,共享网络资源。该网络空间下的网络设备就自行定义了。

MACVLAN模式

先创建一个副本网卡,为容器指定这个副本网卡,容器通过副本网卡的 MAC 地址使用宿主机上的物理设备。在追求通信性能的场合,这种网络是最好的选择。

Docker 的 MACVLAN 只支持 Bridge 通信模式,因此在功能表现上与桥接模式相类似。

Overlay 模式

使用 docker network create -d overlay 创建,Docker 说的 Overlay 网络实际上就是特指 VXLAN,主要用于 Docker Swarm 服务之间进行通信。然而由于 Docker Swarm 败于Kubernetes,在一些简化场景使用Docker Swarm时会用到,并未成为主流。

虚拟化网络

Network Namespace 是 Linux 内核提供的功能,是实现网络虚拟化的重要功能,它能创建多个隔离的网络空间,它们有独自网络栈信息。不管是虚拟机还是容器,运行的时候仿佛自己都在独立的网络中。而且不同Network Namespace的资源相互不可见,彼此之间无法通信。

假如我们的物理机有4块物理网卡,我们要创建4个名称空间,而这些设备是可以单独关联至某个单独的名称空间使用的
docker容器虚拟化网络_第1张图片

如上图所示,把第一块网卡分配给第一个名称空间,第二块分给第二个名称空间,第三块分给第三个名称空间,第四块分给第四个名称空间。此时其它名称空间都是看不见当前所在名称空间的,因为一个设备只能属于一个名称空间。

这种方式使得每一个名称空间都能配置IP地址,并且与外部网络直接通信,因为它们使用的是物理网卡。

但如果我们所拥有的名称空间数量超过物理网卡数量呢?此时我们可以使用虚拟网卡设备,用纯软件的方式来模拟一组设备来使用。Linux内核级支持2种级别设备的模拟,一种是二层设备,一种是三层设备。

Linux内核模拟的二层设备,每个网络接口设备是成对出现的,可以模拟为一根网线的两端,其中一端模拟主机的虚拟网卡,另一端模拟虚拟交换机,就相当于让一个主机连到一个交换机上去。Linux内核原生支持二层虚拟网桥设备,即用软件虚拟交换机的功能。如下图所示:
docker容器虚拟化网络_第2张图片

那么此时如果再有一个名称空间,它有创建了一对虚拟网卡,一端连接名称空间,一端连接虚拟交换机,此时就相当于两个名称空间连接到了同一个交换机网络中,此时如果两个名称空间的网卡地址配置在同一网段,那么很显然他们之间是可以互相通信的。如下图所示:
docker容器虚拟化网络_第3张图片

从网络通信的物理设备到网卡都是用纯软件的方式来实现,这种实现方式就叫做虚拟化网络。

单节点容器间通信

如果在同一个物理机上的两个容器想通信,我们的办法就是在这台主机上建立一个虚拟交换机,而后让两个容器各自用纯软件的方式创建一对虚拟网卡,一半在容器上,一半在虚拟交换机上,从而实现通信。如下图所示:
docker容器虚拟化网络_第4张图片

这就是单节点上两个容器间的通信方式。单节点上两个容器之间的通信也有一些复杂情况,比如我们期望构建的容器要跨交换机通信呢?
docker容器虚拟化网络_第5张图片

我们做两个虚拟交换机,两个交换机上各自连接不同的容器,如上图所示,此时如果要C1和C3通信又该如何实现呢?其实我们可以通过名称空间创建一对网卡,一端连SW1,另一端连SW2,这样一来两个交换机就连起来了,照理说这样一来C1和C3这两个处于不同交换机的容器就可以实现通信了,但是这样一来又存在另一个问题,那就是如果C1和C3在不同网络呢?如果不在同一网络我们就必须要通过路由转发才能使其通信,也就是我们得在两台交换机之间加一个路由器,其实Linux内核本身就是支持路由转发的,只需要我们将路由转发功能打开即可。此时我们可以再启动一个容器,这个容器里面就跑一个内核,并将其转发功能打开,这样一来就模拟了一台路由器,通过这台路由器来实现路由转发。
docker容器虚拟化网络_第6张图片

不同节点容器间通信

如上图所示,此时如果C1要与C5进行通信又该如何实现呢?如果我们采用桥接的方式,很容易产生广播风暴,因此,在大规模的虚拟机或容器的场景中,使用桥接的方式无疑是自取灭亡,所以我们不应该使用桥接的方式来实现通信。
docker容器虚拟化网络_第7张图片

如果一来,我们既不能桥接,又需要与外部来实现通信,那就只能使用NAT技术了。通过DNAT将容器的端口暴露到宿主机上,通过访问宿主机的端口来实现访问容器内部的目的,而在请求端我们需要做SNAT将数据包通过宿主机的真实网卡转发出去。但这样做的话,因为要进行两次NAT转换,所以效率会比较低。

此时我们可以采用一种叫做Overlay Network(叠加网络)的技术来实现不同节点间容器的相互通信功能。

docker容器虚拟化网络_第8张图片

Overlay Network会将报文进行隧道转发,也就是在报文发出去之前要为其添加一个IP首部,也就是上图的1.1和1.2这部分,这里的1.1是源,1.2是目标,当宿主机2收到报文后解封装发现要找的目标容器是C2,于是把包转发给C2。

你可能感兴趣的:(docker,容器)