kdtree的原理就是基于二叉树的形式,将高维空间用超矩形进行划分.其主要用途是用来求解高维空间中最近邻的值.
下面是kdtree.h文件,是kdtree数据结构的头文件
#ifndef _KDTREE_H_
#define _KDTREE_H_
#ifdef __cplusplus
extern "C" {
#endif
struct kdtree;
struct kdres;
/* create a kd-tree for "k"-dimensional data */
struct kdtree *kd_create(int k);
/* free the struct kdtree */
void kd_free(struct kdtree *tree);
/* remove all the elements from the tree */
void kd_clear(struct kdtree *tree);
/* if called with non-null 2nd argument, the function provided
* will be called on data pointers (see kd_insert) when nodes
* are to be removed from the tree.
*/
void kd_data_destructor(struct kdtree *tree, void (*destr)(void*));
/* insert a node, specifying its position, and optional data */
int kd_insert(struct kdtree *tree, const double *pos, void *data);
int kd_insertf(struct kdtree *tree, const float *pos, void *data);
int kd_insert3(struct kdtree *tree, double x, double y, double z, void *data);
int kd_insert3f(struct kdtree *tree, float x, float y, float z, void *data);
/* Find the nearest node from a given point.
*
* This function returns a pointer to a result set with at most one element.
*/
struct kdres *kd_nearest(struct kdtree *tree, const double *pos);
struct kdres *kd_nearestf(struct kdtree *tree, const float *pos);
struct kdres *kd_nearest3(struct kdtree *tree, double x, double y, double z);
struct kdres *kd_nearest3f(struct kdtree *tree, float x, float y, float z);
/* Find the N nearest nodes from a given point.
*
* This function returns a pointer to a result set, with at most N elements,
* which can be manipulated with the kd_res_* functions.
* The returned pointer can be null as an indication of an error. Otherwise
* a valid result set is always returned which may contain 0 or more elements.
* The result set must be deallocated with kd_res_free after use.
*/
/*
struct kdres *kd_nearest_n(struct kdtree *tree, const double *pos, int num);
struct kdres *kd_nearest_nf(struct kdtree *tree, const float *pos, int num);
struct kdres *kd_nearest_n3(struct kdtree *tree, double x, double y, double z);
struct kdres *kd_nearest_n3f(struct kdtree *tree, float x, float y, float z);
*/
/* Find any nearest nodes from a given point within a range.
*
* This function returns a pointer to a result set, which can be manipulated
* by the kd_res_* functions.
* The returned pointer can be null as an indication of an error. Otherwise
* a valid result set is always returned which may contain 0 or more elements.
* The result set must be deallocated with kd_res_free after use.
*/
struct kdres *kd_nearest_range(struct kdtree *tree, const double *pos, double range);
struct kdres *kd_nearest_rangef(struct kdtree *tree, const float *pos, float range);
struct kdres *kd_nearest_range3(struct kdtree *tree, double x, double y, double z, double range);
struct kdres *kd_nearest_range3f(struct kdtree *tree, float x, float y, float z, float range);
/* frees a result set returned by kd_nearest_range() */
void kd_res_free(struct kdres *set);
/* returns the size of the result set (in elements) */
int kd_res_size(struct kdres *set);
/* rewinds the result set iterator */
void kd_res_rewind(struct kdres *set);
/* returns non-zero if the set iterator reached the end after the last element */
int kd_res_end(struct kdres *set);
/* advances the result set iterator, returns non-zero on success, zero if
* there are no more elements in the result set.
*/
int kd_res_next(struct kdres *set);
/* returns the data pointer (can be null) of the current result set item
* and optionally sets its position to the pointers(s) if not null.
*/
void *kd_res_item(struct kdres *set, double *pos);
void *kd_res_itemf(struct kdres *set, float *pos);
void *kd_res_item3(struct kdres *set, double *x, double *y, double *z);
void *kd_res_item3f(struct kdres *set, float *x, float *y, float *z);
/* equivalent to kd_res_item(set, 0) */
void *kd_res_item_data(struct kdres *set);
#ifdef __cplusplus
}
#endif
#endif /* _KDTREE_H_ */
下面是kdtree.c 文件,上面有我自己精心整理的详细的汉语注释,这个版本的kdtree可直接拿来用
//kd_tree.h kd_tree的头文件
#include "stdafx.h"
//头文件
#include
#include
#include
#include
#include "kd_tree.h"
#if defined(WIN32) || defined(__WIN32__)
#include
#endif
#ifdef USE_LIST_NODE_ALLOCATOR
#ifndef NO_PTHREADS
#include
#else
#ifndef I_WANT_THREAD_BUGS
#error "You are compiling with the fast list node allocator, with pthreads disabled! This WILL break if used from multiple threads."
#endif /* I want thread bugs */
#endif /* pthread support */
#endif /* use list node allocator */
//超平面的结构体
//包括一个属性的维数和每维坐标的最大和最小值构成的数组
struct kdhyperrect {
int dim;
double *min, *max; /* minimum/maximum coords */
};
//节点的结构体,也就是事例的结构体
struct kdnode {
double *pos;
int dir;
void *data;
struct kdnode *left, *right; /* negative/positive side */
};
//返回结果节点, 包括树的节点,距离值, 是一个单链表的形式
struct res_node {
struct kdnode *item;
double dist_sq;
struct res_node *next;
};
//树有几个属性,一是维数,一是树根节点,一是超平面,一是销毁data的函数
struct kdtree {
int dim;
struct kdnode *root;
struct kdhyperrect *rect;
void (*destr)(void*);
};
//kdtree的返回结果,包括kdtree,这是一个双链表的形式
struct kdres {
struct kdtree *tree;
struct res_node *rlist, *riter; //双链表?
int size;
};
//计算平方的宏定义,相当于函数
#define SQ(x) ((x) * (x))
static void clear_rec(struct kdnode *node, void (*destr)(void*));
static int insert_rec(struct kdnode **node, const double *pos, void *data, int dir, int dim);
static int rlist_insert(struct res_node *list, struct kdnode *item, double dist_sq);
static void clear_results(struct kdres *set);
static struct kdhyperrect* hyperrect_create(int dim, const double *min, const double *max);
static void hyperrect_free(struct kdhyperrect *rect);
static struct kdhyperrect* hyperrect_duplicate(const struct kdhyperrect *rect);
static void hyperrect_extend(struct kdhyperrect *rect, const double *pos);
static double hyperrect_dist_sq(struct kdhyperrect *rect, const double *pos);
#ifdef USE_LIST_NODE_ALLOCATOR
static struct res_node *alloc_resnode(void);
static void free_resnode(struct res_node*);
#else
#define alloc_resnode() malloc(sizeof(struct res_node))
#define free_resnode(n) free(n)
#endif
//创建一个kdtree
struct kdtree *kd_create(int k)
{
struct kdtree *tree;
if(!(tree = (kdtree*)malloc(sizeof *tree))) {
return 0;
}
tree->dim = k;
tree->root = 0;
tree->destr = 0;
tree->rect = 0;
return tree;
}
//释放掉kdtree
void kd_free(struct kdtree *tree)
{
if(tree) {
kd_clear(tree);
free(tree);
}
}
//清除掉超平面,是按节点递归地进行的
static void clear_rec(struct kdnode *node, void (*destr)(void*))
{
if(!node) return; //一个节点对应一个超平面
//递归函数,递归地清除掉二叉树左分支的超平面和二叉树右分支的超平面
clear_rec(node->left, destr);
clear_rec(node->right, destr);
//如果data清楚函数不为空,就释放掉data
if(destr)
{
destr(node->data);
}
//释放节点的坐标数组
free(node->pos);
//释放节点
free(node);
}
//kdtree清除
void kd_clear(struct kdtree *tree)
{
//清除树中每个节点的超平面,释放树中的各个节点
clear_rec(tree->root, tree->destr);
tree->root = 0;
//如果树的超平面指针不为空,对其进行释放
if (tree->rect)
{
hyperrect_free(tree->rect);
tree->rect = 0;
}
}
//数据销毁,用一个外来的函数来进行data的销毁
void kd_data_destructor(struct kdtree *tree, void (*destr)(void*))
{
//用外来的函数来执行kdtree的销毁函数
tree->destr = destr;
}
//在一个树节点位置处插入超矩形
static int insert_rec(struct kdnode **nptr, const double *pos, void *data, int dir, int dim)
{
int new_dir;
struct kdnode *node;
//如果这个节点是不存在的
if(!*nptr)
{
//分配一个结点
if(!(node = (kdnode *)malloc(sizeof *node)))
{
return -1;
}
if(!(node->pos = (double*)malloc(dim * sizeof *node->pos))) {
free(node);
return -1;
}
memcpy(node->pos, pos, dim * sizeof *node->pos);
node->data = data;
node->dir = dir;
node->left = node->right = 0;
*nptr = node;
return 0;
}
node = *nptr;
new_dir = (node->dir + 1) % dim;
if(pos[node->dir] < node->pos[node->dir]) {
return insert_rec(&(*nptr)->left, pos, data, new_dir, dim);
}
return insert_rec(&(*nptr)->right, pos, data, new_dir, dim);
}
//节点插入操作
//参数为:要进行插入操作的kdtree,要插入的节点坐标,要插入的节点的数据
int kd_insert(struct kdtree *tree, const double *pos, void *data)
{
//插入超矩形
if (insert_rec(&tree->root, pos, data, 0, tree->dim))
{
return -1;
}
//如果树还没有超矩形,就创建一个超矩形
//如果已经有了超矩形,就扩展原有的超矩形
if (tree->rect == 0)
{
tree->rect = hyperrect_create(tree->dim, pos, pos);
}
else
{
hyperrect_extend(tree->rect, pos);
}
return 0;
}
//插入float型坐标的节点
//参数为:要进行插入操作的kdtree,要插入的节点坐标,要插入的节点的数据
//将float型的坐标赋值给double型的缓冲区,经过这个类型转化后进行插入
//本质上是一种类型转化
int kd_insertf(struct kdtree *tree, const float *pos, void *data)
{
static double sbuf[16];
double *bptr, *buf = 0;
int res, dim = tree->dim;
//如果kdtree的维数大于16, 分配dim维double类型的数组
if(dim > 16)
{
#ifndef NO_ALLOCA
if(dim <= 256)
bptr = buf = (double*)alloca(dim * sizeof *bptr);
else
#endif
if(!(bptr = buf = (double*)malloc(dim * sizeof *bptr)))
{
return -1;
}
}
//如果kdtree的维数小于16, 直接将指针指向已分配的内存
else
{
bptr = buf = sbuf;
}
//将要插入点的位置坐标赋值给分配的数组
while(dim-- > 0)
{
*bptr++ = *pos++;
}
//调用节点插入函数kd_insert
res = kd_insert(tree, buf, data);
#ifndef NO_ALLOCA
if(tree->dim > 256)
#else
if(tree->dim > 16)
#endif
//释放缓存
free(buf);
return res;
}
//给出三维坐标值的三维kdtree插入
int kd_insert3(struct kdtree *tree, double x, double y, double z, void *data)
{
double buf[3];
buf[0] = x;
buf[1] = y;
buf[2] = z;
return kd_insert(tree, buf, data);
}
//给出三维float型坐标值的三维kdtree插入
int kd_insert3f(struct kdtree *tree, float x, float y, float z, void *data)
{
double buf[3];
buf[0] = x;
buf[1] = y;
buf[2] = z;
return kd_insert(tree, buf, data);
}
//找到最近邻的点
//参数为:树节点指针, 位置坐标, 阈值, 返回结果的节点, bool型排序,维度
static int find_nearest(struct kdnode *node, const double *pos, double range, struct res_node *list, int ordered, int dim)
{
double dist_sq, dx;
int i, ret, added_res = 0;
if(!node) return 0; //注意这个地方,当节点为空的时候,表明已经查找到最终的叶子结点,返回值为零
dist_sq = 0;
//计算两个节点间的平方和
for(i=0; ipos[i] - pos[i]);
}
//如果距离在阈值范围内,就将其插入到返回结果链表中
if(dist_sq <= SQ(range))
{
if(rlist_insert(list, node, ordered ? dist_sq : -1.0) == -1)
{
return -1;
}
added_res = 1;
}
//在这个节点的划分方向上,求两者之间的差值
dx = pos[node->dir] - node->pos[node->dir];
//根据这个差值的符号, 选择进行递归查找的分支方向
ret = find_nearest(dx <= 0.0 ? node->left : node->right, pos, range, list, ordered, dim);
//如果返回的值大于等于零,表明在这个分支中有满足条件的节点,则返回结果的个数进行累加,并在节点的另一个方向进行查找最近的节点
if(ret >= 0 && fabs(dx) < range)
{
added_res += ret;
ret = find_nearest(dx <= 0.0 ? node->right : node->left, pos, range, list, ordered, dim);
}
if(ret == -1)
{
return -1;
}
added_res += ret;
return added_res;
}
//找到最近邻的n个节点
#if 0
static int find_nearest_n(struct kdnode *node, const double *pos, double range, int num, struct rheap *heap, int dim)
{
double dist_sq, dx;
int i, ret, added_res = 0;
if(!node) return 0;
/* if the photon is close enough, add it to the result heap */
//如果足够近就将其加入到结果堆中
dist_sq = 0;
//计算两者间的欧式距离
for(i=0; ipos[i] - pos[i]);
}
//如果计算所得距离小于阈值
if(dist_sq <= range_sq) {
//如果堆的大小大于num,也就是大于总的要找的节点数
if(heap->size >= num)
{
/* get furthest element */
//得到最远的节点
struct res_node *maxelem = rheap_get_max(heap);
/* and check if the new one is closer than that */
//测试这个节点是不是比最远的节点要近
if(maxelem->dist_sq > dist_sq)
{
//如果是的话,就移除最远的节点
rheap_remove_max(heap);
//并将此节点插入堆中
if(rheap_insert(heap, node, dist_sq) == -1)
{
return -1;
}
added_res = 1;
range_sq = dist_sq;
}
}
//如果堆的大小小于num,直接将此节点插入堆中
else
{
if(rheap_insert(heap, node, dist_sq) == -1)
{
return =1;
}
added_res = 1;
}
}
/* find signed distance from the splitting plane */
dx = pos[node->dir] - node->pos[node->dir];
ret = find_nearest_n(dx <= 0.0 ? node->left : node->right, pos, range, num, heap, dim);
if(ret >= 0 && fabs(dx) < range) {
added_res += ret;
ret = find_nearest_n(dx <= 0.0 ? node->right : node->left, pos, range, num, heap, dim);
}
}
#endif
static void kd_nearest_i(struct kdnode *node, const double *pos, struct kdnode **result, double *result_dist_sq, struct kdhyperrect* rect)
{
int dir = node->dir;
int i;
double dummy, dist_sq;
struct kdnode *nearer_subtree, *farther_subtree;
double *nearer_hyperrect_coord, *farther_hyperrect_coord;
/* Decide whether to go left or right in the tree */
//在二叉树中,决定向左走还是向右走
dummy = pos[dir] - node->pos[dir];
if (dummy <= 0)
{
nearer_subtree = node->left;
farther_subtree = node->right;
nearer_hyperrect_coord = rect->max + dir;
farther_hyperrect_coord = rect->min + dir;
}
else
{
nearer_subtree = node->right;
farther_subtree = node->left;
nearer_hyperrect_coord = rect->min + dir;
farther_hyperrect_coord = rect->max + dir;
}
if (nearer_subtree) {
/* Slice the hyperrect to get the hyperrect of the nearer subtree */
dummy = *nearer_hyperrect_coord;
*nearer_hyperrect_coord = node->pos[dir];
/* Recurse down into nearer subtree */
kd_nearest_i(nearer_subtree, pos, result, result_dist_sq, rect);
/* Undo the slice */
*nearer_hyperrect_coord = dummy;
}
/* Check the distance of the point at the current node, compare it
* with our best so far */
dist_sq = 0;
for(i=0; i < rect->dim; i++)
{
dist_sq += SQ(node->pos[i] - pos[i]);
}
if (dist_sq < *result_dist_sq)
{
*result = node;
*result_dist_sq = dist_sq;
}
if (farther_subtree) {
/* Get the hyperrect of the farther subtree */
dummy = *farther_hyperrect_coord;
*farther_hyperrect_coord = node->pos[dir];
/* Check if we have to recurse down by calculating the closest
* point of the hyperrect and see if it's closer than our
* minimum distance in result_dist_sq. */
if (hyperrect_dist_sq(rect, pos) < *result_dist_sq) {
/* Recurse down into farther subtree */
kd_nearest_i(farther_subtree, pos, result, result_dist_sq, rect);
}
/* Undo the slice on the hyperrect */
*farther_hyperrect_coord = dummy;
}
}
//求kdtree中与点pos最近邻的值
struct kdres *kd_nearest(struct kdtree *kd, const double *pos)
{
struct kdhyperrect *rect;
struct kdnode *result;
struct kdres *rset;
double dist_sq;
int i;
//如果kd不存在,或者其超平面不存在的话,则就不会有结果
if (!kd) return 0;
if (!kd->rect) return 0;
/* Allocate result set */
//为返回结果集合分配空间
if(!(rset = (kdres*)malloc(sizeof *rset)))
{
return 0;
}
if(!(rset->rlist = (res_node*)alloc_resnode())) {
free(rset);
return 0;
}
rset->rlist->next = 0;
rset->tree = kd;
/* Duplicate the bounding hyperrectangle, we will work on the copy */
//复制边界超平面
if (!(rect = hyperrect_duplicate(kd->rect)))
{
kd_res_free(rset);
return 0;
}
/* Our first guesstimate is the root node */
result = kd->root;
dist_sq = 0;
for (i = 0; i < kd->dim; i++)
dist_sq += SQ(result->pos[i] - pos[i]);
/* Search for the nearest neighbour recursively */
//递归地查找最近邻的邻居
kd_nearest_i(kd->root, pos, &result, &dist_sq, rect);
/* Free the copy of the hyperrect */
//释放超矩形
hyperrect_free(rect);
/* Store the result */
//存储结果
if (result)
{
if (rlist_insert(rset->rlist, result, -1.0) == -1)
{
kd_res_free(rset);
return 0;
}
rset->size = 1;
kd_res_rewind(rset);
return rset;
}
else
{
kd_res_free(rset);
return 0;
}
}
//kd_nearest的float特例
struct kdres *kd_nearestf(struct kdtree *tree, const float *pos)
{
static double sbuf[16];
double *bptr, *buf = 0;
int dim = tree->dim;
struct kdres *res;
if(dim > 16) {
#ifndef NO_ALLOCA
if(dim <= 256)
bptr = buf = (double*)alloca(dim * sizeof *bptr);
else
#endif
if(!(bptr = buf = (double*)malloc(dim * sizeof *bptr))) {
return 0;
}
} else {
bptr = buf = sbuf;
}
while(dim-- > 0) {
*bptr++ = *pos++;
}
res = kd_nearest(tree, buf);
#ifndef NO_ALLOCA
if(tree->dim > 256)
#else
if(tree->dim > 16)
#endif
free(buf);
return res;
}
//kd_nearest的三坐标特例
struct kdres *kd_nearest3(struct kdtree *tree, double x, double y, double z)
{
double pos[3];
pos[0] = x;
pos[1] = y;
pos[2] = z;
return kd_nearest(tree, pos);
}
//kd_nearest的三坐标float特例
struct kdres *kd_nearest3f(struct kdtree *tree, float x, float y, float z)
{
double pos[3];
pos[0] = x;
pos[1] = y;
pos[2] = z;
return kd_nearest(tree, pos);
}
/* ---- nearest N search ---- */
/*
static kdres *kd_nearest_n(struct kdtree *kd, const double *pos, int num)
{
int ret;
struct kdres *rset;
if(!(rset = malloc(sizeof *rset))) {
return 0;
}
if(!(rset->rlist = alloc_resnode())) {
free(rset);
return 0;
}
rset->rlist->next = 0;
rset->tree = kd;
if((ret = find_nearest_n(kd->root, pos, range, num, rset->rlist, kd->dim)) == -1) {
kd_res_free(rset);
return 0;
}
rset->size = ret;
kd_res_rewind(rset);
return rset;
}*/
//找到满足距离小于range值的节点
struct kdres *kd_nearest_range(struct kdtree *kd, const double *pos, double range)
{
int ret;
struct kdres *rset;
if(!(rset = (kdres*)malloc(sizeof *rset))) {
return 0;
}
if(!(rset->rlist = (res_node*)alloc_resnode())) {
free(rset);
return 0;
}
rset->rlist->next = 0;
rset->tree = kd;
if((ret = find_nearest(kd->root, pos, range, rset->rlist, 0, kd->dim)) == -1) {
kd_res_free(rset);
return 0;
}
rset->size = ret;
kd_res_rewind(rset);
return rset;
}
//kd_nearest_range的float特例
struct kdres *kd_nearest_rangef(struct kdtree *kd, const float *pos, float range)
{
static double sbuf[16];
double *bptr, *buf = 0;
int dim = kd->dim;
struct kdres *res;
if(dim > 16) {
#ifndef NO_ALLOCA
if(dim <= 256)
bptr = buf = (double*)alloca(dim * sizeof *bptr);
else
#endif
if(!(bptr = buf = (double*)malloc(dim * sizeof *bptr))) {
return 0;
}
} else {
bptr = buf = sbuf;
}
while(dim-- > 0) {
*bptr++ = *pos++;
}
res = kd_nearest_range(kd, buf, range);
#ifndef NO_ALLOCA
if(kd->dim > 256)
#else
if(kd->dim > 16)
#endif
free(buf);
return res;
}
//kd_nearest_range的三坐标特例
struct kdres *kd_nearest_range3(struct kdtree *tree, double x, double y, double z, double range)
{
double buf[3];
buf[0] = x;
buf[1] = y;
buf[2] = z;
return kd_nearest_range(tree, buf, range);
}
//kd_nearest_range的三坐标float特例
struct kdres *kd_nearest_range3f(struct kdtree *tree, float x, float y, float z, float range)
{
double buf[3];
buf[0] = x;
buf[1] = y;
buf[2] = z;
return kd_nearest_range(tree, buf, range);
}
//返回结果的释放
void kd_res_free(struct kdres *rset)
{
clear_results(rset);
free_resnode(rset->rlist);
free(rset);
}
//获取返回结果集合的大小
int kd_res_size(struct kdres *set)
{
return (set->size);
}
//再次回到这个节点本身的位置
void kd_res_rewind(struct kdres *rset)
{
rset->riter = rset->rlist->next;
}
//找到返回结果中的最终节点
int kd_res_end(struct kdres *rset)
{
return rset->riter == 0;
}
//返回结果列表中的下一个节点
int kd_res_next(struct kdres *rset)
{
rset->riter = rset->riter->next;
return rset->riter != 0;
}
//将返回结果的节点的坐标和data抽取出来
void *kd_res_item(struct kdres *rset, double *pos)
{
if(rset->riter) {
if(pos) {
memcpy(pos, rset->riter->item->pos, rset->tree->dim * sizeof *pos);
}
return rset->riter->item->data;
}
return 0;
}
//将返回结果的节点的坐标和data抽取出来,坐标为float型的值
void *kd_res_itemf(struct kdres *rset, float *pos)
{
if(rset->riter) {
if(pos) {
int i;
for(i=0; itree->dim; i++) {
pos[i] = rset->riter->item->pos[i];
}
}
return rset->riter->item->data;
}
return 0;
}
//将返回结果的节点的坐标和data抽取出来,坐标具体形式给出
void *kd_res_item3(struct kdres *rset, double *x, double *y, double *z)
{
if(rset->riter) {
if(*x) *x = rset->riter->item->pos[0];
if(*y) *y = rset->riter->item->pos[1];
if(*z) *z = rset->riter->item->pos[2];
}
return 0;
}
//将返回结果的节点的坐标和data抽取出来,坐标为float型的值,坐标具体形式给出
void *kd_res_item3f(struct kdres *rset, float *x, float *y, float *z)
{
if(rset->riter) {
if(*x) *x = rset->riter->item->pos[0];
if(*y) *y = rset->riter->item->pos[1];
if(*z) *z = rset->riter->item->pos[2];
}
return 0;
}
//获取data数据
void *kd_res_item_data(struct kdres *set)
{
return kd_res_item(set, 0);
}
/* ---- hyperrectangle helpers ---- */
//创建超平面,包括三个参数:维度,每维的最小值和最大值数组
static struct kdhyperrect* hyperrect_create(int dim, const double *min, const double *max)
{
size_t size = dim * sizeof(double);
struct kdhyperrect* rect = 0;
if (!(rect = (kdhyperrect*)malloc(sizeof(struct kdhyperrect))))
{
return 0;
}
rect->dim = dim;
if (!(rect->min = (double*)malloc(size))) {
free(rect);
return 0;
}
if (!(rect->max = (double*)malloc(size))) {
free(rect->min);
free(rect);
return 0;
}
memcpy(rect->min, min, size);
memcpy(rect->max, max, size);
return rect;
}
//释放超平面结构体
static void hyperrect_free(struct kdhyperrect *rect)
{
free(rect->min);
free(rect->max);
free(rect);
}
//赋值超平面结构体
static struct kdhyperrect* hyperrect_duplicate(const struct kdhyperrect *rect)
{
return hyperrect_create(rect->dim, rect->min, rect->max);
}
//更新超平面结构体最大\最小值数组
static void hyperrect_extend(struct kdhyperrect *rect, const double *pos)
{
int i;
for (i=0; i < rect->dim; i++) {
if (pos[i] < rect->min[i]) {
rect->min[i] = pos[i];
}
if (pos[i] > rect->max[i]) {
rect->max[i] = pos[i];
}
}
}
//计算固定坐标点与超平面之间的距离
static double hyperrect_dist_sq(struct kdhyperrect *rect, const double *pos)
{
int i;
double result = 0;
for (i=0; i < rect->dim; i++)
{
if (pos[i] < rect->min[i])
{
result += SQ(rect->min[i] - pos[i]);
}
else if (pos[i] > rect->max[i])
{
result += SQ(rect->max[i] - pos[i]);
}
}
return result;
}
/* ---- static helpers ---- */
#ifdef USE_LIST_NODE_ALLOCATOR
/* special list node allocators. */
static struct res_node *free_nodes;
#ifndef NO_PTHREADS
static pthread_mutex_t alloc_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif
//创建返回结果节点
static struct res_node *alloc_resnode(void)
{
struct res_node *node;
#ifndef NO_PTHREADS
pthread_mutex_lock(&alloc_mutex);
#endif
if(!free_nodes) {
node = malloc(sizeof *node);
} else {
node = free_nodes;
free_nodes = free_nodes->next;
node->next = 0;
}
#ifndef NO_PTHREADS
pthread_mutex_unlock(&alloc_mutex);
#endif
return node;
}
//释放返回结果节点
static void free_resnode(struct res_node *node)
{
#ifndef NO_PTHREADS
pthread_mutex_lock(&alloc_mutex);
#endif
node->next = free_nodes;
free_nodes = node;
#ifndef NO_PTHREADS
pthread_mutex_unlock(&alloc_mutex);
#endif
}
#endif /* list node allocator or not */
/* inserts the item. if dist_sq is >= 0, then do an ordered insert */
/* TODO make the ordering code use heapsort */
//函数参数: 返回结果节点指针,树节点指针,距离函数
//将一个结果节点插入到返回结果的列表中
static int rlist_insert(struct res_node *list, struct kdnode *item, double dist_sq)
{
struct res_node *rnode;
//创建一个返回结果的节点
if(!(rnode = (res_node*)alloc_resnode()))
{
return -1;
}
rnode->item = item; //对应的树节点
rnode->dist_sq = dist_sq; //对应的距离值
//当距离大于零的时候
if(dist_sq >= 0.0)
{
while(list->next && list->next->dist_sq < dist_sq)
{
list = list->next;
}
}
rnode->next = list->next;
list->next = rnode;
return 0;
}
//清除返回结果的集合
//本质上是个双链表中单链表的清理
static void clear_results(struct kdres *rset)
{
struct res_node *tmp, *node = rset->rlist->next;
while(node)
{
tmp = node;
node = node->next;
free_resnode(tmp);
}
rset->rlist->next = 0;
}