参考引用
- Hello 算法
- Github:hello-algo
二叉树(binary tree)是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的分治逻辑
/* 二叉树节点结构体 */
struct TreeNode {
int val; // 节点值
TreeNode *left; // 左子节点指针
TreeNode *right; // 右子节点指针
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
每个节点都有两个指针,分别指向左子节点和右子节点,该节点被称为这两个子节点的父节点。当给定一个二叉树的节点时,将该节点的左子节点及其以下节点形成的树称为该节点的左子树,同理可得右子树
在二叉树中,除叶节点外,其他所有节点都包含子节点和非空子树
/* 1、初始化二叉树 */
// 与链表类似,首先初始化节点,然后构建指针
// 初始化节点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建指针指向
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
/* 2、插入与删除节点 */
// 与链表类似,在二叉树中插入与删除节点可以通过修改指针来实现
TreeNode* P = new TreeNode(0);
// 在 n1 -> n2 中间插入节点 P
n1->left = P;
P->left = n2;
// 删除节点 P
n1->left = n2;
从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现
/* 层序遍历 */
// 时间复杂度:所有节点被访问一次,使用 O(n) 时间,其中 n 为节点数量
// 空间复杂度:在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 (n+1)/2 个节点,占用 O(n) 空间
vector<int> levelOrder(TreeNode *root) {
// 初始化队列,加入根节点
queue<TreeNode *> queue;
queue.push(root);
// 初始化一个列表,用于保存遍历序列
vector<int> vec;
while (!queue.empty()) {
TreeNode *node = queue.front();
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存节点值
if (node->left != nullptr)
queue.push(node->left); // 左子节点入队
if (node->right != nullptr)
queue.push(node->right); // 右子节点入队
}
return vec;
}
// 时间复杂度:所有节点被访问一次,使用 O(n) 时间
// 空间复杂度:在最差情况下,即树退化为链表时,递归深度达到 n,系统占用 O(n) 栈帧空间
/* 前序遍历 */
void preOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:根节点 -> 左子树 -> 右子树
vec.push_back(root->val);
preOrder(root->left);
preOrder(root->right);
}
/* 中序遍历 */
void inOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:左子树 -> 根节点 -> 右子树
inOrder(root->left);
vec.push_back(root->val);
inOrder(root->right);
}
/* 后序遍历 */
void postOrder(TreeNode *root) {
if (root == nullptr)
return;
// 访问优先级:左子树 -> 右子树 -> 根节点
postOrder(root->left);
postOrder(root->right);
vec.push_back(root->val);
}
前序遍历二叉树的递归过程可分为 “递” 和 “归” 两个逆向的部分
- “递” 表示开启新方法,程序在此过程中访问下一个节点
- “归” 表示函数返回,代表当前节点已经访问完毕
映射公式的角色相当于链表中的指针。给定数组中的任意一个节点,都可通过映射公式来访问它的左(右)子节点
// 使用 int 最大值 INT_MAX 标记空位
vector<int> tree = {1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15};
实现一个基于数组表示的二叉树,包括以下几种操作
/* 数组表示下的二叉树类 */
class ArrayBinaryTree {
public:
/* 构造方法 */
ArrayBinaryTree(vector<int> arr) {
tree = arr;
}
/* 节点数量 */
int size() {
return tree.size();
}
/* 获取索引为 i 节点的值 */
int val(int i) {
// 若索引越界,则返回 INT_MAX ,代表空位
if (i < 0 || i >= size())
return INT_MAX;
return tree[i];
}
/* 获取索引为 i 节点的左子节点的索引 */
int left(int i) {
return 2 * i + 1;
}
/* 获取索引为 i 节点的右子节点的索引 */
int right(int i) {
return 2 * i + 2;
}
/* 获取索引为 i 节点的父节点的索引 */
int parent(int i) {
return (i - 1) / 2;
}
/* 层序遍历 */
vector<int> levelOrder() {
vector<int> res;
// 直接遍历数组
for (int i = 0; i < size(); i++) {
if (val(i) != INT_MAX)
res.push_back(val(i));
}
return res;
}
/* 前序遍历 */
vector<int> preOrder() {
vector<int> res;
dfs(0, "pre", res);
return res;
}
/* 中序遍历 */
vector<int> inOrder() {
vector<int> res;
dfs(0, "in", res);
return res;
}
/* 后序遍历 */
vector<int> postOrder() {
vector<int> res;
dfs(0, "post", res);
return res;
}
private:
vector<int> tree;
/* 深度优先遍历 */
void dfs(int i, string order, vector<int> &res) {
// 若为空位,则返回
if (val(i) == INT_MAX)
return;
// 前序遍历
if (order == "pre")
res.push_back(val(i));
dfs(left(i), order, res);
// 中序遍历
if (order == "in")
res.push_back(val(i));
dfs(right(i), order, res);
// 后序遍历
if (order == "post")
res.push_back(val(i));
}
};
二叉树的数组表示主要有以下优点
二叉树的数组表示主要有以下局限性
给定目标节点值 num,可以根据二叉搜索树的性质来查找。声明一个节点 cur,从二叉树的根节点 root 出发,循环比较节点值 cur.val 和 num 之间的大小关系
二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 O(log n) 时间
/* 查找节点 */
TreeNode *search(int num) {
TreeNode *cur = root;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 目标节点在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 目标节点在 cur 的左子树中
else if (cur->val > num)
cur = cur->left;
// 找到目标节点,跳出循环
else
break;
}
// 返回目标节点
return cur;
}
// 时间复杂度:O(log n)
void insert(int num) {
// 若树为空,则初始化根节点
if (root == nullptr) {
root = new TreeNode(num);
return;
}
TreeNode *cur = root, *pre = nullptr;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 找到重复节点,直接返回
if (cur->val == num)
return;
pre = cur;
// 插入位置在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 插入位置在 cur 的左子树中
else
cur = cur->left;
}
// 插入节点
TreeNode *node = new TreeNode(num);
if (pre->val < num)
pre->right = node;
else
pre->left = node;
}
// 时间复杂度:O(log n)
// 其中查找待删除节点需要 O(log n) 时间,获取中序遍历后继节点需要 O(log n) 时间
void remove(int num) {
// 若树为空,直接提前返回
if (root == nullptr)
return;
TreeNode *cur = root, *pre = nullptr;
// 循环查找,越过叶节点后跳出
while (cur != nullptr) {
// 找到待删除节点,跳出循环
if (cur->val == num)
break;
pre = cur;
// 待删除节点在 cur 的右子树中
if (cur->val < num)
cur = cur->right;
// 待删除节点在 cur 的左子树中
else
cur = cur->left;
}
// 若无待删除节点,则直接返回
if (cur == nullptr)
return;
// 1、子节点数量 = 0 or 1
if (cur->left == nullptr || cur->right == nullptr) {
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
// 删除节点 cur
if (cur != root) {
if (pre->left == cur)
pre->left = child;
else
pre->right = child;
} else {
// 若删除节点为根节点,则重新指定根节点
root = child;
}
// 释放内存
delete cur;
}
// 2、子节点数量 = 2
else {
// 获取中序遍历中 cur 的下一个节点
TreeNode *tmp = cur->right;
while (tmp->left != nullptr) {
tmp = tmp->left;
}
int tmpVal = tmp->val;
// 递归删除节点 tmp
remove(tmp->val);
// 用 tmp 覆盖 cur
cur->val = tmpVal;
}
}
/* AVL 树节点类 */
struct TreeNode {
int val{}; // 节点值
int height = 0; // 节点高度
TreeNode *left{}; // 左子节点
TreeNode *right{}; // 右子节点
TreeNode() = default;
explicit TreeNode(int x) : val(x){}
};
/* 获取节点高度 */
int height(TreeNode *node) {
// 空节点高度为 -1 ,叶节点高度为 0
return node == nullptr ? -1 : node->height;
}
/* 更新节点高度 */
void updateHeight(TreeNode *node) {
// 节点高度等于最高子树高度 + 1
node->height = max(height(node->left), height(node->right)) + 1;
}
/* 获取平衡因子 */
int balanceFactor(TreeNode *node) {
// 空节点平衡因子为 0
if (node == nullptr)
return 0;
// 节点平衡因子 = 左子树高度 - 右子树高度
return height(node->left) - height(node->right);
}
设平衡因子为 f,则一棵 AVL 树的任意节点的平衡因子皆满足 -1 < f < 1
/* 右旋操作 */
TreeNode *rightRotate(TreeNode *node) {
TreeNode *child = node->left;
TreeNode *grandChild = child->right;
// 以 child 为原点,将 node 向右旋转
child->right = node;
node->left = grandChild;
// 更新节点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
/* 左旋操作 */
TreeNode *leftRotate(TreeNode *node) {
TreeNode *child = node->right;
TreeNode *grandChild = child->left;
// 以 child 为原点,将 node 向左旋转
child->left = node;
node->right = grandChild;
// 更新节点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode *rotate(TreeNode *node) {
// 获取节点 node 的平衡因子
int _balanceFactor = balanceFactor(node);
// 左偏树
if (_balanceFactor > 1) {
if (balanceFactor(node->left) >= 0) {
// 右旋
return rightRotate(node);
} else {
// 先左旋后右旋
node->left = leftRotate(node->left);
return rightRotate(node);
}
}
// 右偏树
if (_balanceFactor < -1) {
if (balanceFactor(node->right) <= 0) {
// 左旋
return leftRotate(node);
} else {
// 先右旋后左旋
node->right = rightRotate(node->right);
return leftRotate(node);
}
}
// 平衡树,无须旋转,直接返回
return node;
}
/* 插入节点 */
void insert(int val) {
root = insertHelper(root, val);
}
/* 递归插入节点(辅助方法) */
TreeNode *insertHelper(TreeNode *node, int val) {
if (node == nullptr)
return new TreeNode(val);
/* 1. 查找插入位置,并插入节点 */
if (val < node->val)
node->left = insertHelper(node->left, val);
else if (val > node->val)
node->right = insertHelper(node->right, val);
else
return node; // 重复节点不插入,直接返回
updateHeight(node); // 更新节点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
/* 删除节点 */
void remove(int val) {
root = removeHelper(root, val);
}
/* 递归删除节点(辅助方法) */
TreeNode *removeHelper(TreeNode *node, int val) {
if (node == nullptr)
return nullptr;
/* 1. 查找节点,并删除之 */
if (val < node->val)
node->left = removeHelper(node->left, val);
else if (val > node->val)
node->right = removeHelper(node->right, val);
else {
if (node->left == nullptr || node->right == nullptr) {
TreeNode *child = node->left != nullptr ? node->left : node->right;
// 子节点数量 = 0 ,直接删除 node 并返回
if (child == nullptr) {
delete node;
return nullptr;
}
// 子节点数量 = 1 ,直接删除 node
else {
delete node;
node = child;
}
} else {
// 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
TreeNode *temp = node->right;
while (temp->left != nullptr) {
temp = temp->left;
}
int tempVal = temp->val;
node->right = removeHelper(node->right, temp->val);
node->val = tempVal;
}
}
updateHeight(node); // 更新节点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}