分布式事务 Seata总结

目录

解决分布式事务的思路

Seata基础

Seata的架构

部署TC服务

微服务集成Seata

Seata的4种事务模式

XA模式

AT模式

TCC模式

SAGA模式

四种模式对比

Seata的高可用

高可用架构模型

TC服务的高可用和异地容灾

 Seata in AT mode 的实现

Seata in AT mode 工作流程概述

Seata in AT mode 工作流程详述


注意:本文参考  1.4 w字,25 张图让你彻底掌握分布式事务原理

分布式事务_愛沢かりん的博客-CSDN博客_分布式事务

解决分布式事务的思路

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。

CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC):

分布式事务 Seata总结_第1张图片

这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务。

Seata基础

Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。

Seata的架构

Seata事务管理中有三个重要的角色:

TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。

TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。

RM (Resource Manager) - 资源管理器:管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

 分布式事务 Seata总结_第2张图片

部署TC服务

一、部署Seata的tc-server

1.下载

首先我们要下载seata-server包,地址在http/seata.io/zh-cn/blog/download.html

2.修改配置

修改conf目录下的registry.conf文件:

 分布式事务 Seata总结_第3张图片

registry {
  # tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
  type = "nacos"

  nacos {
    # seata tc 服务注册到 nacos的服务名称,可以自定义
    application = "seata-tc-server"
    serverAddr = "192.168.136.160:8848"
    group = "DEFAULT_GROUP"
    namespace = ""
    cluster = "SH"
    username = "nacos"
    password = "nacos"
  }
}

config {
  # 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
  type = "nacos"
  # 配置nacos地址等信息
  nacos {
    serverAddr = "192.168.136.160:8848"
    namespace = ""
    group = "SEATA_GROUP"
    username = "nacos"
    password = "nacos"
    dataId = "seataServer.properties"
  }
}

 3.在nacos添加配置

特别注意,为了让tc服务的集群可以共享配置,我们选择了nacos作为统一配置中心。因此服务端配置文件seataServer.properties文件需要在nacos中配好。

分布式事务 Seata总结_第4张图片

# 数据存储方式,db代表数据库
store.mode=db
store.db.datasource=druid
store.db.dbType=mysql
store.db.driverClassName=com.mysql.jdbc.Driver
store.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=true
store.db.user=root
store.db.password=159735
store.db.minConn=5
store.db.maxConn=30
store.db.globalTable=global_table
store.db.branchTable=branch_table
store.db.queryLimit=100
store.db.lockTable=lock_table
store.db.maxWait=5000
# 事务、日志等配置
server.recovery.committingRetryPeriod=1000
server.recovery.asynCommittingRetryPeriod=1000
server.recovery.rollbackingRetryPeriod=1000
server.recovery.timeoutRetryPeriod=1000
server.maxCommitRetryTimeout=-1
server.maxRollbackRetryTimeout=-1
server.rollbackRetryTimeoutUnlockEnable=false
server.undo.logSaveDays=7
server.undo.logDeletePeriod=86400000

# 客户端与服务端传输方式
transport.serialization=seata
transport.compressor=none
# 关闭metrics功能,提高性能
metrics.enabled=false
metrics.registryType=compact
metrics.exporterList=prometheus
metrics.exporterPrometheusPort=9898

 4.创建数据库表

特别注意:tc服务在管理分布式事务时,需要记录事务相关数据到数据库中,你需要提前创建好这些表。
新建一个名为seata的数据库,运行sql文件:


SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;

-- ----------------------------
-- 分支事务表
-- ----------------------------
DROP TABLE IF EXISTS `branch_table`;
CREATE TABLE `branch_table`  (
  `branch_id` bigint(20) NOT NULL,
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `status` tinyint(4) NULL DEFAULT NULL,
  `client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime(6) NULL DEFAULT NULL,
  `gmt_modified` datetime(6) NULL DEFAULT NULL,
  PRIMARY KEY (`branch_id`) USING BTREE,
  INDEX `idx_xid`(`xid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

-- ----------------------------
-- 全局事务表
-- ----------------------------
DROP TABLE IF EXISTS `global_table`;
CREATE TABLE `global_table`  (
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `status` tinyint(4) NOT NULL,
  `application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `timeout` int(11) NULL DEFAULT NULL,
  `begin_time` bigint(20) NULL DEFAULT NULL,
  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime NULL DEFAULT NULL,
  `gmt_modified` datetime NULL DEFAULT NULL,
  PRIMARY KEY (`xid`) USING BTREE,
  INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,
  INDEX `idx_transaction_id`(`transaction_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

SET FOREIGN_KEY_CHECKS = 1;

5.启动TC服务

进入bin目录,运行其中的seata-server.bat即可:

分布式事务 Seata总结_第5张图片

启动成功后,seata-server应该已经注册到nacos注册中心了,可以去nacos服务列表查看。 

微服务集成Seata

1.引入依赖

首先,在需要被事务管理的微服务中引入依赖:


            
                com.alibaba.cloud
                spring-cloud-starter-alibaba-seata
                
                    
                    
                        seata-spring-boot-starter
                        io.seata
                    
                
            
            
                io.seata
                seata-spring-boot-starter
                
                ${seata.version}
            

2.配置TC地址

被TC管理的微服务application.yml中,配置TC服务信息,通过注册中心nacos,结合服务名称获取TC地址:

seata:
  registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
    type: nacos # 注册中心类型 nacos
    nacos:
      server-addr: 192.168.136.160:8848 # nacos地址
      namespace: "" # namespace,默认为空
      group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
      application: seata-tc-server # seata服务名称
      username: nacos
      password: nacos
  tx-service-group: seata-demo # 事务组名称
  service:
    vgroup-mapping: # 事务组与cluster的映射关系
      seata-demo: SH

微服务如何根据这些配置寻找TC的地址呢?

我们知道注册到Nacos中的微服务,确定一个具体实例需要四个信息:

namespace:命名空间

group:分组

application:服务名

cluster:集群名

分布式事务 Seata总结_第6张图片

namespace为空,就是默认的public

结合起来,TC服务的信息就是:public@DEFAULT_GROUP@seata-tc-server@SH,这样就能确定TC服务集群了。然后就可以去Nacos拉取对应的实例信息了。

Seata的4种事务模式

XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持,像mogondb、redis这些不支持

一.两阶段提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。

1.正常情况:

分布式事务 Seata总结_第7张图片

2.异常情况: 

分布式事务 Seata总结_第8张图片

一阶段:

事务协调者通知每个事物参与者执行本地事务
本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

事务协调者基于一阶段的报告来判断下一步操作
如果一阶段都成功,则通知所有事务参与者,提交事务
如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

二.Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:

 分布式事务 Seata总结_第9张图片

RM一阶段的工作:

​ ① 注册分支事务到TC

​ ② 执行分支业务sql但不提交

​ ③ 报告执行状态到TC

TC二阶段的工作:

TC检测各分支事务执行状态

a.如果都成功,通知所有RM提交事务

b.如果有失败,通知所有RM回滚事务

RM二阶段的工作:

接收TC指令,提交或回滚事务

三.优缺点

XA模式的优点是什么?

事务的强一致性,满足ACID原则。

常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差

依赖关系型数据库实现事务

四.实现XA模式

(1)修改application.yml文件(每个参与事务的微服务),开启XA模式:

seata:
  data-source-proxy-mode: XA

(2)给发起全局事务的入口方法添加@GlobalTransactional注解:

分布式事务 Seata总结_第10张图片

(3)重启服务并测试回滚 

分布式事务 Seata总结_第11张图片

库存count只有10,显然mysql会出异常,然后全部微服务回滚了
分布式事务 Seata总结_第12张图片

五.优缺点

XA模式的优点是什么?

事务的强一致性,满足ACID原则。

常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差

依赖关系型数据库实现事务

AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

一.Seata的AT模型

 分布式事务 Seata总结_第13张图片

阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

 分布式事务 Seata总结_第14张图片

二.脏写问题 

分布式事务 Seata总结_第15张图片

解决:

解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。 

分布式事务 Seata总结_第16张图片

三.实现AT模式

AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log
(1)undo_log表和全局锁表lock_table导入到数据库:

-- ----------------------------
-- Table structure for undo_log
-- ----------------------------
DROP TABLE IF EXISTS `undo_log`;
CREATE TABLE `undo_log`  (
  `branch_id` bigint(20) NOT NULL COMMENT 'branch transaction id',
  `xid` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'global transaction id',
  `context` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'undo_log context,such as serialization',
  `rollback_info` longblob NOT NULL COMMENT 'rollback info',
  `log_status` int(11) NOT NULL COMMENT '0:normal status,1:defense status',
  `log_created` datetime(6) NOT NULL COMMENT 'create datetime',
  `log_modified` datetime(6) NOT NULL COMMENT 'modify datetime',
  UNIQUE INDEX `ux_undo_log`(`xid`, `branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = 'AT transaction mode undo table' ROW_FORMAT = Compact;

-- ----------------------------
-- Records of undo_log
-- ----------------------------



-- ----------------------------
-- Table structure for lock_table
-- ----------------------------
DROP TABLE IF EXISTS `lock_table`;
CREATE TABLE `lock_table`  (
  `row_key` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `xid` varchar(96) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `branch_id` bigint(20) NOT NULL,
  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `table_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `pk` varchar(36) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime NULL DEFAULT NULL,
  `gmt_modified` datetime NULL DEFAULT NULL,
  PRIMARY KEY (`row_key`) USING BTREE,
  INDEX `idx_branch_id`(`branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

分布式事务 Seata总结_第17张图片

(2)修改所有相关微服务的application.yml文件,将事务模式修改为AT模式即可:

seata:
  data-source-proxy-mode: AT # 默认就是AT

 (3)重启服务并测试

分布式事务 Seata总结_第18张图片

分布式事务 Seata总结_第19张图片

四. 优缺点

AT模式的优点:

一阶段完成直接提交事务,释放数据库资源,性能比较好

利用全局锁实现读写隔离

没有代码侵入,框架自动完成回滚和提交

AT模式的缺点:

两阶段之间属于软状态,属于最终一致

框架的快照功能会影响性能,但比XA模式要好很多

TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

Try:资源的检测和预留;

Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。

Cancel:预留资源释放,可以理解为try的反向操作。

一.流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。

阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30

初识余额:

 分布式事务 Seata总结_第20张图片

此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。

阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30

确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:

 

此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元

阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30

需要回滚,那么就要释放冻结金额,恢复可用金额:

 

二.Seata的TCC模型 

分布式事务 Seata总结_第21张图片

分布式事务 Seata总结_第22张图片 

 

三.优缺点

TCC模式的每个阶段是做什么的?

Try:资源检查和预留

Confirm:业务执行和提交

Cancel:预留资源的释放

TCC的优点是什么?

一阶段完成直接提交事务,释放数据库资源,性能好

相比AT模型,无需生成快照,无需使用全局锁,性能最强

不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库

TCC的缺点是什么?

有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦

软状态,事务是最终一致

需要考虑Confirm和Cancel的失败情况,做好幂等处理

四.事务悬挂和空回滚

(1)空回滚

当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。

 分布式事务 Seata总结_第23张图片

执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。

(2)业务悬挂

对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂。

执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

五.实现TCC模式

(1)定义一张冻结表

CREATE TABLE `account_freeze_tbl` (
  `xid` varchar(128) NOT NULL  COMMENT '是全局事务id',
  `user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
  `freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
  `state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
  PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;

分布式事务 Seata总结_第24张图片

 (2)实体类

分布式事务 Seata总结_第25张图片

(3)mapper 

分布式事务 Seata总结_第26张图片

那此时,我们的业务开怎么做呢?

Try业务:

记录冻结金额和事务状态到account_freeze表

扣减account表可用金额

Confirm业务

根据xid删除account_freeze表的冻结记录

Cancel业务

修改account_freeze表,冻结金额为0,state为2

修改account表,恢复可用金额

如何判断是否空回滚?

cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚

如何避免业务悬挂?

try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务
改造account-service,利用TCC实现余额扣减功能。

(4)声明TCC接口

TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,

我们在account-service项目中的cn.itcast.account.service包中新建一个接口,声明TCC三个接口:

@LocalTCC
public interface AccountTCCService {

    /**
     * try的接口
     */
    @TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
    void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
                @BusinessActionContextParameter(paramName = "money")int money);

    /**
     *提交事务的接口
     * @param ctx 可以拿到事务信息和参数信息
     * @return
     */
    boolean confirm(BusinessActionContext ctx);

    /**
     * 回滚接口
     */
    boolean cancel(BusinessActionContext ctx);
}

(5)编写实现类

@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {

    @Autowired
    private AccountMapper accountMapper;
    @Autowired
    private AccountFreezeMapper freezeMapper;

    @Override
    @Transactional
    public void deduct(String userId, int money) {
        // 0.获取事务id
        String xid = RootContext.getXID();

        //1.判断freeze中是否有冻结数据,有回滚记录则,会造成业务悬挂
        AccountFreeze oldFreeze = freezeMapper.selectById(xid);
        if (oldFreeze!=null){
            return;
        }

        // 1.扣减可用余额
        accountMapper.deduct(userId, money);
        // 2.记录冻结金额,事务状态
        AccountFreeze freeze = new AccountFreeze();
        freeze.setUserId(userId);
        freeze.setFreezeMoney(money);
        freeze.setState(AccountFreeze.State.TRY);
        freeze.setXid(xid);
        freezeMapper.insert(freeze);
    }

    @Override
    public boolean confirm(BusinessActionContext ctx) {
        // 1.获取事务id
        String xid = ctx.getXid();
        // 2.根据id删除冻结记录,删除是天然幂等性
        int count = freezeMapper.deleteById(xid);
        return count == 1;
    }

    @Override
    public boolean cancel(BusinessActionContext ctx) {
        // 0.查询冻结记录c
        String xid = ctx.getXid();
        AccountFreeze freeze = freezeMapper.selectById(xid);

        //1.判断空回滚,根据freeze是否为null
        String userId = ctx.getActionContext("userId").toString();
        if (freeze==null){
            //try没执行,需要回滚,并记录回滚
            freeze = new AccountFreeze();
            freeze.setUserId(userId);
            freeze.setFreezeMoney(0);
            freeze.setState(AccountFreeze.State.CANCEL);
            freeze.setXid(xid);
            freezeMapper.insert(freeze);
            return true;
        }
        //2.幂等性判断,防止重复操作
        if (freeze.getState()==AccountFreeze.State.CANCEL){
            //说明已经回滚过了
            return true;
        }

        // 1.恢复可用余额
        accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
        // 2.将冻结金额清零,状态改为CANCEL
        freeze.setFreezeMoney(0);
        freeze.setState(AccountFreeze.State.CANCEL);
        int count = freezeMapper.updateById(freeze);
        return count == 1;
    }
}

分布式事务 Seata总结_第27张图片 

 

SAGA模式

Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。

一.原理

在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。

分布式事务 Seata总结_第28张图片

Saga也分为两个阶段:

一阶段:直接提交本地事务

二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚

二.优缺点

优点:

事务参与者可以基于事件驱动实现异步调用,吞吐高

一阶段直接提交事务,无锁,性能好

不用编写TCC中的三个阶段,实现简单

缺点:

软状态持续时间不确定,时效性差

没有锁,没有事务隔离,会有脏写

四种模式对比

 分布式事务 Seata总结_第29张图片

AT与XA的区别:

XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。

XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。

XA模式强一致;AT模式最终一致

Seata的高可用

高可用架构模型

搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。

但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾。

比如一个TC集群在上海,另一个TC集群在杭州:

 分布式事务 Seata总结_第30张图片

微服务基于事务组(tx-service-group)与TC集群的映射关系,来查找当前应该使用哪个TC集群。当SH集群故障时,只需要将vgroup-mapping中的映射关系改成HZ。则所有微服务就会切换到HZ的TC集群了。

TC服务的高可用和异地容灾

(1)模拟异地容灾的TC集群

计划启动两台seata的tc服务节点:

 

将seata目录复制一份,起名为seata2,修改seata2/conf/registry.conf内容如下:

registry {
  # tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
  type = "nacos"

  nacos {
    # seata tc 服务注册到 nacos的服务名称,可以自定义
    application = "seata-tc-server"
    serverAddr = "127.0.0.1:8848"
    group = "DEFAULT_GROUP"
    namespace = ""
    cluster = "HZ"
    username = "nacos"
    password = "nacos"
  }
}

config {
  # 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
  type = "nacos"
  # 配置nacos地址等信息
  nacos {
    serverAddr = "127.0.0.1:8848"
    namespace = ""
    group = "SEATA_GROUP"
    username = "nacos"
    password = "nacos"
    dataId = "seataServer.properties"
  }
}

 进入seata2/bin目录,然后运行命令:

seata-server.bat -p 8092

然后打开nacos控制台查看服务列表

(2)将事务组映射配置到nacos

接下来,我们需要将tx-service-group与cluster的映射关系都配置到nacos配置中心。
新建一个配置:

分布式事务 Seata总结_第31张图片

# 事务组映射关系
service.vgroupMapping.seata-demo=SH

service.enableDegrade=false
service.disableGlobalTransaction=false
# 与TC服务的通信配置
transport.type=TCP
transport.server=NIO
transport.heartbeat=true
transport.enableClientBatchSendRequest=false
transport.threadFactory.bossThreadPrefix=NettyBoss
transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
transport.threadFactory.shareBossWorker=false
transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
transport.threadFactory.clientSelectorThreadSize=1
transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
transport.threadFactory.bossThreadSize=1
transport.threadFactory.workerThreadSize=default
transport.shutdown.wait=3
# RM配置
client.rm.asyncCommitBufferLimit=10000
client.rm.lock.retryInterval=10
client.rm.lock.retryTimes=30
client.rm.lock.retryPolicyBranchRollbackOnConflict=true
client.rm.reportRetryCount=5
client.rm.tableMetaCheckEnable=false
client.rm.tableMetaCheckerInterval=60000
client.rm.sqlParserType=druid
client.rm.reportSuccessEnable=false
client.rm.sagaBranchRegisterEnable=false
# TM配置
client.tm.commitRetryCount=5
client.tm.rollbackRetryCount=5
client.tm.defaultGlobalTransactionTimeout=60000
client.tm.degradeCheck=false
client.tm.degradeCheckAllowTimes=10
client.tm.degradeCheckPeriod=2000

# undo日志配置
client.undo.dataValidation=true
client.undo.logSerialization=jackson
client.undo.onlyCareUpdateColumns=true
client.undo.logTable=undo_log
client.undo.compress.enable=true
client.undo.compress.type=zip
client.undo.compress.threshold=64k
client.log.exceptionRate=100

 (3)微服务读取nacos配置
接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:

seata:
  config:
    type: nacos
    nacos:
      server-addr: 127.0.0.1:8848
      username: nacos
      password: nacos
      group: SEATA_GROUP
      data-id: client.properties

重启微服务,现在微服务到底是连接tc的SH集群,还是tc的HZ集群,都统一由nacos的client.properties来决定了。

 Seata in AT mode 的实现

给出业界开源分布式事务框架 Seata 的实现。

Seata 为用户提供了 AT、TCC、SAGA 和 XA 事务模式。其中 AT 模式是 Seata 主推的事务模式,因此本章分析 Seata in AT mode 的实现。使用 AT 有一个前提,那就是微服务使用的数据库必须是支持事务的关系型数据库。

Seata in AT mode 工作流程概述

Seata 的 AT 模式建立在关系型数据库的本地事务特性的基础之上,通过数据源代理类拦截并解析数据库执行的 SQL,记录自定义的回滚日志,如需回滚,则重放这些自定义的回滚日志即可。AT 模式虽然是根据 XA 事务模型(2PC)演进而来的,但是 AT 打破了 XA 协议的阻塞性制约,在一致性和性能上取得了平衡。

AT 模式是基于 XA 事务模型演进而来的,它的整体机制也是一个改进版本的两阶段提交协议。AT 模式的两个基本阶段是:

1)第一阶段:首先获取本地锁,执行本地事务,业务数据操作和记录回滚日志在同一个本地事务中提交,最后释放本地锁;

2)第二阶段:如需全局提交,异步删除回滚日志即可,这个过程很快就能完成。如需要回滚,则通过第一阶段的回滚日志进行反向补偿。

本章描述 Seata in AT mode 的工作原理使用的电商微服务模型如下图所示:

分布式事务 Seata总结_第32张图片

在上图中,协调者 shopping-service 先调用参与者 repo-service 扣减库存,后调用参与者 order-service 生成订单。这个业务流使用 Seata in XA mode 后的全局事务流程如下图所示:

 分布式事务 Seata总结_第33张图片

上图描述的全局事务执行流程为:

1)shopping-service 向 Seata 注册全局事务,并产生一个全局事务标识 XID

2)将 repo-service.repo_db、order-service.order_db 的本地事务执行到待提交阶段,事务内容包含对 repo-service.repo_db、order-service.order_db 进行的查询操作以及写每个库的 undo_log 记录

3)repo-service.repo_db、order-service.order_db 向 Seata 注册分支事务,并将其纳入该 XID 对应的全局事务范围

4)提交 repo-service.repo_db、order-service.order_db 的本地事务

5)repo-service.repo_db、order-service.order_db 向 Seata 汇报分支事务的提交状态

6)Seata 汇总所有的 DB 的分支事务的提交状态,决定全局事务是该提交还是回滚

7)Seata 通知 repo-service.repo_db、order-service.order_db 提交/回滚本地事务,若需要回滚,采取的是补偿式方法

其中 1)2)3)4)5)属于第一阶段,6)7)属于第二阶段。

Seata in AT mode 工作流程详述

在上面的电商业务场景中,购物服务调用库存服务扣减库存,调用订单服务创建订单,显然这两个调用过程要放在一个事务里面。即:

 start global_trx

 call 库存服务的扣减库存接口

 call 订单服务的创建订单接口

commit global_trx

分布式事务 Seata总结_第34张图片

分布式事务 Seata总结_第35张图片

分布式事务 Seata总结_第36张图片

分布式事务 Seata总结_第37张图片

从 AT 模式第一阶段的流程来看,分支的本地事务在第一阶段提交完成之后,就会释放掉本地事务锁定的本地记录。这是 AT 模式和 XA 最大的不同点,在 XA 事务的两阶段提交中,被锁定的记录直到第二阶段结束才会被释放。所以 AT 模式减少了锁记录的时间,从而提高了分布式事务的处理效率。AT 模式之所以能够实现第一阶段完成就释放被锁定的记录,是因为 Seata 在每个服务的数据库中维护了一张 undo_log 表,其中记录了对 t_order / t_repo 进行操作前后记录的镜像数据,即便第二阶段发生异常,只需回放每个服务的 undo_log 中的相应记录即可实现全局回滚。

undo_log 的表结构:

 分布式事务 Seata总结_第38张图片

第一阶段结束之后,Seata 会接收到所有分支事务的提交状态,然后决定是提交全局事务还是回滚全局事务。

1)若所有分支事务本地提交均成功,则 Seata 决定全局提交。Seata 将分支提交的消息发送给各个分支事务,各个分支事务收到分支提交消息后,会将消息放入一个缓冲队列,然后直接向 Seata 返回提交成功。之后,每个本地事务会慢慢处理分支提交消息,处理的方式为:删除相应分支事务的 undo_log 记录。之所以只需删除分支事务的 undo_log 记录,而不需要再做其他提交操作,是因为提交操作已经在第一阶段完成了(这也是 AT 和 XA 不同的地方)。这个过程如下图所示:

 分布式事务 Seata总结_第39张图片

分支事务之所以能够直接返回成功给 Seata,是因为真正关键的提交操作在第一阶段已经完成了,清除 undo_log 日志只是收尾工作,即便清除失败了,也对整个分布式事务不产生实质影响。

2)若任一分支事务本地提交失败,则 Seata 决定全局回滚,将分支事务回滚消息发送给各个分支事务,由于在第一阶段各个服务的数据库上记录了 undo_log 记录,分支事务回滚操作只需根据 undo_log 记录进行补偿即可。全局事务的回滚流程如下图所示:

 分布式事务 Seata总结_第40张图片

这里对图中的 2、3 步做进一步的说明:

1)由于上文给出了 undo_log 的表结构,所以可以通过 xid 和 branch_id 来找到当前分支事务的所有 undo_log 记录;

2)拿到当前分支事务的 undo_log 记录之后,首先要做数据校验,如果 afterImage 中的记录与当前的表记录不一致,说明从第一阶段完成到此刻期间,有别的事务修改了这些记录,这会导致分支事务无法回滚,向 Seata 反馈回滚失败;如果 afterImage 中的记录与当前的表记录一致,说明从第一阶段完成到此刻期间,没有别的事务修改这些记录,分支事务可回滚,进而根据 beforeImage 和 afterImage 计算出补偿 SQL,执行补偿 SQL 进行回滚,然后删除相应 undo_log,向 Seata 反馈回滚成功。

分布式事务 Seata总结_第41张图片

分布式事务 Seata总结_第42张图片 分布式事务 Seata总结_第43张图片

 

事务具有 ACID 特性,全局事务解决方案也在尽量实现这四个特性。以上关于 Seata in AT mode 的描述很显然体现出了 AT 的原子性、一致性和持久性。下面着重描述一下 AT 如何保证多个全局事务的隔离性的。

在 AT 中,当多个全局事务操作同一张表时,通过全局锁来保证事务的隔离性。下面描述一下全局锁在读隔离和写隔离两个场景中的作用原理:

1)写隔离(若有全局事务在改/写/删记录,另一个全局事务对同一记录进行的改/写/删要被隔离起来,即写写互斥):写隔离是为了在多个全局事务对同一张表的同一个字段进行更新操作时,避免一个全局事务在没有被提交成功之前所涉及的数据被其他全局事务修改。写隔离的基本原理是:在第一阶段本地事务(开启本地事务的时候,本地事务会对涉及到的记录加本地锁)提交之前,确保拿到全局锁。如果拿不到全局锁,就不能提交本地事务,并且不断尝试获取全局锁,直至超出重试次数,放弃获取全局锁,回滚本地事务,释放本地事务对记录加的本地锁。

假设有两个全局事务 gtrx_1 和 gtrx_2 在并发操作库存服务,意图扣减如下记录的库存数量:

分布式事务 Seata总结_第44张图片

在上图中 gtrx_1 和 gtrx_2 均成功提交,如果 gtrx_1 在第二阶段执行回滚操作,那么 gtrx_1 需要重新发起本地事务获取本地锁,然后根据 undo_log 对这个 id=10002 的记录进行补偿式回滚。此时 gtrx_2 仍在等待全局锁,且持有这个 id=10002 的记录的本地锁,因此 gtrx_1 会回滚失败(gtrx_1 回滚需要同时持有全局锁和对 id=10002 的记录加的本地锁),回滚失败的 gtrx_1 会一直重试回滚。直到旁边的 gtrx_2 获取全局锁的尝试次数超过阈值,gtrx_2 会放弃获取全局锁,发起本地回滚,本地回滚结束后,自然会释放掉对这个 id=10002 的记录加的本地锁。此时,gtrx_1 终于可以成功对这个 id=10002 的记录加上了本地锁,同时拿到了本地锁和全局锁的 gtrx_1 就可以成功回滚了。整个过程,全局锁始终在 gtrx_1 手中,并不会发生脏写的问题。整个过程的流程图如下所示: 

分布式事务 Seata总结_第45张图片

2)读隔离(若有全局事务在改/写/删记录,另一个全局事务对同一记录的读取要被隔离起来,即读写互斥):在数据库本地事务的隔离级别为读已提交、可重复读、串行化时(读未提交不起什么隔离作用,一般不使用),Seata AT 全局事务模型产生的隔离级别是读未提交,也就是说一个全局事务会看到另一个全局事务未全局提交的数据,产生脏读,从前文的第一阶段和第二阶段的流程图中也可以看出这一点。这在最终一致性的分布式事务模型中是可以接受的。

如果要求 AT 模型一定要实现读已提交的事务隔离级别,可以利用 Seata 的 SelectForUpdateExecutor 执行器对 SELECT FOR UPDATE 语句进行代理。SELECT FOR UPDATE 语句在执行时会申请全局锁,如果全局锁已经被其他全局事务占有,则回滚 SELECT FOR UPDATE 语句的执行,释放本地锁,并且重试 SELECT FOR UPDATE 语句。在这个过程中,查询请求会被阻塞,直到拿到全局锁(也就是要读取的记录被其他全局事务提交),读到已被全局事务提交的数据才返回。这个过程如下图所示:

 分布式事务 Seata总结_第46张图片

分布式事务 Seata总结_第47张图片

分布式事务 Seata总结_第48张图片 

 

你可能感兴趣的:(分布式,系统架构,后端)