visdrone2019数据集的处理

一、数据集下载
下载visdrone2019数据集,下面是github下载地址

https://github.com/VisDrone

visdrone2019数据集的处理_第1张图片
下载完成后我们可以在Anootations看到txt文件,其中相关的数字解释如下:

在这里插入图片描述

 <bbox_left>,<bbox_top>,<bbox_width>,<bbox_height>,<score>,<object_category>,<truncation>,<occlusion>


    Name                                                  Description
-------------------------------------------------------------------------------------------------------------------------------     
 <bbox_left>	     The x coordinate of the top-left corner of the predicted bounding box

 <bbox_top>	     The y coordinate of the top-left corner of the predicted object bounding box

 <bbox_width>	     The width in pixels of the predicted object bounding box

<bbox_height>	     The height in pixels of the predicted object bounding box

   <score>	     The score in the DETECTION file indicates the confidence of the predicted bounding box enclosing 
                     an object instance.
                     The score in GROUNDTRUTH file is set to 1 or 0. 1 indicates the bounding box is considered in evaluation, 
                     while 0 indicates the bounding box will be ignored.
                      
<object_category>    The object category indicates the type of annotated object, (i.e., ignored regions(0), pedestrian(1), 
                     people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10), 
                     others(11))
                      
<truncation>	     The score in the DETECTION result file should be set to the constant -1.
                     The score in the GROUNDTRUTH file indicates the degree of object parts appears outside a frame 
                     (i.e., no truncation = 0 (truncation ratio 0%), and partial truncation = 1 (truncation ratio 1% ~ 50%)).
                      
<occlusion>	     The score in the DETECTION file should be set to the constant -1.
                     The score in the GROUNDTRUTH file indicates the fraction of objects being occluded (i.e., no occlusion = 0 
                     (occlusion ratio 0%), partial occlusion = 1 (occlusion ratio 1% ~ 50%), and heavy occlusion = 2 
                     (occlusion ratio 50% ~ 100%)).

其中:两种有用的注释:truncation截断率,occlusion遮挡率。

被遮挡的对象比例来定义遮挡率。

截断率用于指示对象部分出现在框架外部的程度。

如果目标的截断率大于50%,则会在评估过程中将其跳过。
相关转换到voc的代码如下:

# coding: utf-8

"""
将annatations文件夹中的txt标签文件转换为XML文件;
txt标签内容为:
<bbox_left>,<bbox_top>,<bbox_width>,<bbox_height>,<score>,<object_category>,<truncation>,<occlusion>
类别:
ignored regions(0), pedestrian(1),
people(2), bicycle(3), car(4), van(5),
truck(6), tricycle(7), awning-tricycle(8),
bus(9), motor(10), others(11)
"""

import os
import cv2
import time
from xml.dom import minidom

name_dict = {'0': 'ignored regions', '1': 'pedestrian', '2': 'people',
             '3': 'bicycle', '4': 'car', '5': 'van', '6': 'truck',
             '7': 'tricycle', '8': 'awning-tricycle', '9': 'bus',
             '10': 'motor', '11': 'others'}


def transfer_to_xml(pic, txt, file_name):
    xml_save_path = 'xml'  # 生成的xml文件存储的文件夹
    if not os.path.exists(xml_save_path):
        os.mkdir(xml_save_path)

    img = cv2.imread(pic)
    img_w = img.shape[1]
    img_h = img.shape[0]
    img_d = img.shape[2]
    doc = minidom.Document()

    annotation = doc.createElement("annotation")
    doc.appendChild(annotation)
    folder = doc.createElement('folder')
    folder.appendChild(doc.createTextNode('visdrone'))
    annotation.appendChild(folder)

    filename = doc.createElement('filename')
    filename.appendChild(doc.createTextNode(file_name))
    annotation.appendChild(filename)

    source = doc.createElement('source')
    database = doc.createElement('database')
    database.appendChild(doc.createTextNode("Unknown"))
    source.appendChild(database)

    annotation.appendChild(source)

    size = doc.createElement('size')
    width = doc.createElement('width')
    width.appendChild(doc.createTextNode(str(img_w)))
    size.appendChild(width)
    height = doc.createElement('height')
    height.appendChild(doc.createTextNode(str(img_h)))
    size.appendChild(height)
    depth = doc.createElement('depth')
    depth.appendChild(doc.createTextNode(str(img_d)))
    size.appendChild(depth)
    annotation.appendChild(size)

    segmented = doc.createElement('segmented')
    segmented.appendChild(doc.createTextNode("0"))
    annotation.appendChild(segmented)

    with open(txt, 'r') as f:
        lines = [f.readlines()]
        for line in lines:
            for boxes in line:
                box = boxes.strip('\n')
                box = box.split(',')
                x_min = box[0]
                y_min = box[1]
                x_max = int(box[0]) + int(box[2])
                y_max = int(box[1]) + int(box[3])
                object_name = name_dict[box[5]]

                # if object_name is 'ignored regions' or 'others':
                #     continue

                object = doc.createElement('object')
                nm = doc.createElement('name')
                nm.appendChild(doc.createTextNode(object_name))
                object.appendChild(nm)
                pose = doc.createElement('pose')
                pose.appendChild(doc.createTextNode("Unspecified"))
                object.appendChild(pose)
                truncated = doc.createElement('truncated')
                truncated.appendChild(doc.createTextNode("1"))
                object.appendChild(truncated)
                difficult = doc.createElement('difficult')
                difficult.appendChild(doc.createTextNode("0"))
                object.appendChild(difficult)
                bndbox = doc.createElement('bndbox')
                xmin = doc.createElement('xmin')
                xmin.appendChild(doc.createTextNode(x_min))
                bndbox.appendChild(xmin)
                ymin = doc.createElement('ymin')
                ymin.appendChild(doc.createTextNode(y_min))
                bndbox.appendChild(ymin)
                xmax = doc.createElement('xmax')
                xmax.appendChild(doc.createTextNode(str(x_max)))
                bndbox.appendChild(xmax)
                ymax = doc.createElement('ymax')
                ymax.appendChild(doc.createTextNode(str(y_max)))
                bndbox.appendChild(ymax)
                object.appendChild(bndbox)
                annotation.appendChild(object)
                with open(os.path.join(xml_save_path, file_name + '.xml'), 'w') as x:
                    x.write(doc.toprettyxml())
                x.close()
    f.close()


if __name__ == '__main__':
    t = time.time()
    print('Transfer .txt to .xml...ing....')
    txt_folder = 'annotations'  # visdrone txt标签文件夹
    txt_file = os.listdir(txt_folder)
    img_folder = 'images'  # visdrone 照片所在文件夹

    for txt in txt_file:
        txt_full_path = os.path.join(txt_folder, txt)
        img_full_path = os.path.join(img_folder, txt.split('.')[0] + '.jpg')

        try:
            transfer_to_xml(img_full_path, txt_full_path, txt.split('.')[0])
        except Exception as e:
            print(e)

    print("Transfer .txt to .XML sucessed. costed: {:.3f}s...".format(time.time() - t))

你可能感兴趣的:(yolo,python)