- Megatron:深度学习中的高性能模型架构
gs80140
基础知识科谱AI机器学习人工智能
Megatron:深度学习中的高性能模型架构Megatron是由NVIDIA推出的深度学习大规模预训练模型框架,主要针对大规模Transformer架构模型的高效训练与推理。Megatron大多用于GPT(生成式预训练模型)、BERT等Transformer模型的预训练,擅长在大规模数据集和高性能计算资源上进行训练。Megatron的主要特点1.超大模型的高效训练模型并行(ModelParalle
- 数据结构基础1
四代目 水门
嵌入式面试数据结构排序算法算法
什么是稳定排序和不稳定排序稳定排序和不稳定排序是排序算法的两种分类。稳定排序算法保证在排序过程中,相同元素的相对位置不变。不稳定排序算法则不保证在排序过程中,相同元素的相对位置不变。常见的稳定排序算法包括:冒泡排序快速排序常见的不稳定排序算法包括:选择排序堆排序二叉树前、中、后序遍历的规则前序遍历:先访问根结点、再前序遍历左子树、最后前序遍历右子树;中序遍历:中序遍历左子树、访问根节点、中序遍历右
- AIGC的底层框架和技术模块
五岔路口
AIGC
AIGC(ArtificialIntelligenceGeneratedContent,人工智能生成内容)的底层框架和技术模块是构建其强大自然语言处理能力的核心组成部分。以下是对AIGC底层框架和技术模块的详细解析:底层框架AIGC的底层框架主要基于深度学习的语言模型,特别是Transformer模型及其变种,如GPT(GenerativePre-trainedTransformer)等。这些模型
- 101算法javaScript描述【3】
2401_89317507
算法javascriptjava
通常情况下,不能出现超过连续三个相同的罗马数字并且罗马数字中小的数字在大的数字的右边。但也存在特例,例如4不写做IIII,而是IV。数字1在数字5的左边,所表示的数等于大数5减小数1得到的数值4。同样地,数字9表示为IX。这个特殊的规则只适用于以下六种情况:I可以放在V(5)和X(10)的左边,来表示4和9。X可以放在L(50)和C(100)的左边,来表示40和90。C可以放在D(500)和M(1
- LeetCode—406.根据身高重建队列(Queue Reconstruction by Height)——分析及代码(Java)
江南土豆
数据结构与算法LeetCodeJava题解
LeetCode—406.根据身高重建队列[QueueReconstructionbyHeight]——分析及代码[Java]一、题目二、分析及代码1.贪心算法(1)思路(2)代码(3)结果三、其他一、题目假设有打乱顺序的一群人站成一个队列。每个人由一个整数对(h,k)表示,其中h是这个人的身高,k是排在这个人前面且身高大于或等于h的人数。编写一个算法来重建这个队列。注意:总人数少于1100人。示
- LeetCode:300.最长递增子序列
xiaoshiguang3
代码随想录-跟着Carl学算法leetcode算法java动态规划
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的!代码随想录LeetCode:300.最长递增子序列给你一个整数数组nums,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]是数组[0,3,1,6,2,2,7]的子序列。示例1:输入:nums=[10,9,2,5,
- LeetCode:674.最长连续递增序列
xiaoshiguang3
代码随想录-跟着Carl学算法leetcode算法java动态规划
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的!代码随想录LeetCode:674.最长连续递增序列给定一个未经排序的整数数组,找到最长且连续递增的子序列,并返回该序列的长度。连续递增的子序列可以由两个下标l和r(lnums[i-1])dp[i]=dp[i-1]+1publicintfindLengthOfLCIS(int[]nums){intlen=
- Python机器学习实战:人脸识别技术的实现和挑战
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:人脸识别技术的实现和挑战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:人脸识别技术,模型训练,多人识别,动态人脸检测,应用场景1.背景介绍1.1问题的由来随着科技的进步和互联网的普及,人脸识别技术因其在安全验证、生物特征识别、智能监控等多个领域的广泛应用而迅速崛起。从传统的门禁系统到现代的人脸支付、社交媒体的自动登
- 深度学习:基础原理与实践
阿尔法星球
深度学习python人工智能
1.深度学习概述1.1定义与发展历程深度学习是机器学习的一个分支,它基于人工神经网络的学习算法,特别是那些具有多层(深层)结构的网络。深度学习模型能够自动从原始数据中提取复杂的特征,而不需要人为设计特征提取算法。定义:深度学习可以定义为使用深层神经网络进行学习的过程,这些网络由多个非线性的变换组成,能够学习数据的多层次表示。发展历程:深度学习的起源可以追溯到1943年WarrenSturgisMc
- 代码随想录算法训练营Day38||完全背包问题、leetcode 518. 零钱兑换 II 、 377. 组合总和 Ⅳ 、70. 爬楼梯 (进阶)
jiegongzhu3z
算法leetcode职场和发展
一、完全背包问题相较于01背包,完全背包的显著特征是每个物品可以用无数次,遍历顺序也不需要为了保证每个物品只去一次而倒序遍历。#include#includeusingnamespacestd;intmain(){intN,V;cin>>N>>V;vectorweight(N+1,0);vectorvalue(N+1,0);for(inti=0;i>weight[i]>>value[i];}vec
- 愿景:做机器视觉行业的颠覆者
gaoenyang760525
人工智能
一个愿景,两场战斗,专注制胜。一个愿景:做机器视觉行业的颠覆者。我给自己创业,立一个大的愿景:做机器视觉行业的颠覆者。两场战斗:无监督-大模型上半场,无监督。2025-2030,共五年。用无监督算法,颠覆现有缺陷检测方法,争取在2-3个场景落地。在以下几个场景中,选择最容易的场景落地,做细分场景的标准检测设备:1、视觉筛选机2、PCB相关3、半导体、芯片4、纺织服装5、包装印刷(激光打标、喷码、瓶
- 什么是MoE?
CM莫问
深度学习人工智能算法常见概念人工智能算法python深度学习MoE混合专家模型机器学习
一、概念MoE(MixtureofExperts)是一种深度学习架构,它结合了多个专家模型(Experts)和一个门控机制(GatingMechanism)来处理不同的输入数据或任务。MoE的核心思想是将复杂的任务分解为多个子任务,由不同的专家网络来处理,以此来提升整体模型的性能和效率。MOE通过集成多个专家来显著提高模型的容量和表达能力,每个专家可以专注于学习输入数据的不同方面或特征,使得整个模
- 第三篇:模型压缩与量化技术——DeepSeek如何在边缘侧突破“小而强”的算力困局
python算法(魔法师版)
数据挖掘机器学习人工智能深度学习神经网络生成对抗网络边缘计算
——从算法到芯片的全栈式优化实践随着AI应用向移动终端与物联网设备渗透,模型轻量化成为行业核心挑战。DeepSeek通过自研的“算法-编译-硬件”协同优化体系,在保持模型性能的前提下,实现参数量与能耗的指数级压缩。本文从技术原理、工程实现到落地应用,完整解析其全链路压缩技术体系。第一章算法层创新:结构化压缩与动态稀疏化1.1非均匀结构化剪枝技术DeepSeek提出**“敏感度感知通道剪枝”(SAC
- (每日一题)连续⼦数组最⼤和———<动态规划-线性dp>
课堂随笔
每日一题动态规划算法考研每日一题
1.题⽬链接:DP6连续⼦数组最⼤和2.题⽬描述:3.解法:算法思路:简单线性dp。i.状态表⽰:dp[i]表⽰:以i位置为结尾的所有⼦数组中,最⼤和是多少。ii.状态转移⽅程:dp[i]=max(dp[i-1]+arr[i],arr[i])C++算法代码:#include#includeusingnamespacestd;intmain(){//初始化intn;cin>>n;vectortemp
- 【 书生·浦语大模型实战营】学习笔记(三):“茴香豆” 搭建你的RAG 智能助理
GoAI
自然语言处理NLP深入浅出AI深入浅出LLM深度学习LLM人工智能大模型
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接【书生·
- linux进程调度HMP,HMP调度器和EAS调度器
熙公主的爪牙
linux进程调度HMP
HMP调度器为了降低功耗,ARM开发了大小核架构处理器。Linux内核中的负载均衡算法基于SMP模型,并未考虑big.LITTLE模型,因此Linaro开发了一个HMP调度器用于支持这种架构,它也被用于Android5.x和Android6.x中,但这种调度器并没有被合入内核的基线中。该调度器的进程调度算法基本上和CFS一样,主要区别在于调度域和负载均衡的处理上。HMP调度域的实现比自带的CFS调
- 离散化、贪心、双指针、二分、倍增、构造、位运算
那只狸花猫吖
蓝桥杯算法
目录八、离散化1、离散化简介九、贪心1、贪心的概念十、双指针1、双指针简介2、对撞指针3、快慢指针十一、二分1、二分的概念2、二分的两种模板十二、倍增1、定义十三、构造1、定义十四、位运算1、位运算概述八、离散化1、离散化简介把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。离散化是一种将数组的值域压缩,从而更加关注元素的大小关系的算法。当原数组中的数字很大、负数、小数时(大多数
- Python——常见排序算法解析
代码输入中...
算法排序算法数据结构python开发语言
概述十种常见排序算法可以分为两大类:非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序。线性时间非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此称为线性时间非比较类排序。基础定义稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。不稳定:如果a原本在b的前面,而
- 课程内容摘要生成:基于知识蒸馏与事实增强的深度学习模型实践
二进制独立开发
非纯粹GenAIGenAI与Python深度学习人工智能自然语言处理python语言模型神经网络生成对抗网络
文章目录引言一、核心技术:知识蒸馏与事实三元组融合二、模型架构设计与优化三、Python实现与关键代码解析四、业务价值与效果分析五、挑战与优化方向引言在教育内容数字化进程中,课程内容摘要生成技术能够从海量教学资源中提炼核心知识点,解决人工编写效率低、知识更新滞后的问题。当前主流方法依赖于深度学习模型,但存在事实性偏差、可解释性不足等缺陷。本文提出一种融合知识蒸馏与事实三元组增强的摘要生成框架,结合
- 详解大模型微调数据集构建方法(持续更新)
herosunly
大模型微调数据集构建方法
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文详细介绍了大模型微调数据集构建方法,希望能对学习大模型的同学们有所帮助。文章目录
- 【算法】回溯算法专题① ——子集型回溯 python
查理零世
算法python
目录引入变形实战演练总结引入子集https://leetcode.cn/problems/subsets/description/给你一个整数数组nums,数组中的元素互不相同。返回该数组所有可能的子集(幂集)。解集不能包含重复的子集。你可以按任意顺序返回解集。示例1:输入:nums=[1,2,3]输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]示例2:输
- 基于深度学习的基于视觉的机器人导航
SEU-WYL
深度学习dnn深度学习机器人人工智能
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。这种方法使机器人能够像人类一样使用视觉信息感知环境、规划路径,并避开障碍物。与传统的导航方法相比,深度学习模型能够在动态环境中表现出更强的适应能力和鲁棒性。1.视觉导航的基本概念视觉导航是指通过处理机器人的摄像头等视觉传感器采集到的图像数据,构建环境模型,进而进行路径
- 图像边缘检测与轮廓提取详解及python实现
闲人编程
pythonpython计算机视觉开发语言RobertsPrewittCanny边缘检测
目录图像边缘检测与轮廓提取详解第一部分:图像边缘检测与轮廓提取概述1.1什么是边缘检测和轮廓提取?1.2边缘检测与轮廓提取的应用领域1.3为什么需要边缘检测和轮廓提取?第二部分:常见的图像边缘检测算法2.1Sobel算子2.2Canny边缘检测2.3拉普拉斯算子(LaplacianofGaussian,LoG)2.4Prewitt算子2.5Roberts交叉算子第三部分:图像轮廓提取的基本方法3.
- 使用 Python 实现无人机实时路径规划的 MPC 算法
闲人编程
pythonpython无人机算法MPC路径优化
目录使用Python实现无人机实时路径规划的MPC算法引言1.模型预测控制(MPC)概述1.1定义1.2MPC的基本原理1.3代价函数1.4MPC的特点2.Python中的MPC算法实现2.1安装必要的库2.2定义类2.2.1无人机模型类2.2.2MPC控制器类2.3示例程序3.MPC算法的优缺点3.1优点3.2缺点4.改进方向5.应用场景结论使用Python实现无人机实时路径规划的MPC算法引言
- 100种算法【Python版】第44篇——龙格-库塔法
AnFany
算法python人工智能龙格-库塔微分方程ODE
本文目录1算法说明2算法示例:使用龙格-库塔法求解微分方程3算法应用:捕食者-猎物模型4算法可解决问题1算法说明龙格-库塔法最初由德国数学家卡尔·龙格(CarlRunge)和马丁·库塔(WilhelmKutta)在20世纪初提出。它们为求解常微分方程(ODE)提供了一种有效的数值方法,尤其是在处理初值问题时。龙格-库塔法的设计旨在通过提高计算的精度和稳定性,使数值解能更好地逼近真实解。最常用的版本
- 【深度学习】softmax回归的简洁实现
熙曦Sakura
深度学习深度学习回归人工智能
softmax回归的简洁实现我们发现(通过深度学习框架的高级API能够使实现)(softmax)线性(回归变得更加容易)。同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。本节继续使用Fashion-MNIST数据集,并保持批量大小为256。importtorchfromtorchimportnnfromd2limporttorchasd2l初始化模型参数[softmax回
- 算法竞赛的头文件选择(<iostream>和<bits/stdc++.h>)
Tech007号研究员
算法(C++)自学笔记算法c++
1.#include功能:是C++标准库中的一个头文件,主要用于输入输出操作。它包含了`cin`、`cout`、`cerr`和`clog`等标准输入输出流对象。使用场景:当只需要进行基本的输入输出操作时,可以使用`#include`。优点:只包含必要的输入输出功能,编译速度较快;代码更清晰,只引入需要的功能;可移植性高,所有C++编译器都支持。缺点:如果需要使用其他标准库(如`vector`、`a
- 蓝桥杯备考:前缀和算法---模板题
无敌大饺子 1
蓝桥杯职场和发展
【模板】前缀和这道题,如果我们简单的用暴力解法,时间复杂度就是O(q*N)也就是10的十次方,这时候我们就会超时我们要学习一种前缀和的算法,它能帮助我们做一些预处理,用空间复杂度代替时间复杂度,比如说这道题,我们开辟一个数组,f[N],我们只需要一个公式f[i]=f[i-1]+a[i]就能完成我们的预处理,最后查询的时间复杂度就是O(1)了,比如我们要查询l到r的和,我们就让f[r]-f[l-1]
- 深度学习查漏补缺:1.梯度消失、梯度爆炸和残差块
nnerddboy
白话机器学习深度学习人工智能
一、梯度消失梯度消失的根本原因在于激活函数的性质和链式法则的计算:激活函数的导数很小:常见的激活函数(例如Sigmoid和Tanh)在输入较大或较小时,输出趋于饱和(Sigmoid的输出趋于0或1),其导数接近于0。在反向传播中,每一层的梯度都会乘以激活函数的导数。如果导数很小,乘积就会导致梯度逐渐变小。链式法则的多次相乘:假设网络有nn层,梯度从输出层传到第ii层时,会经历多次链式相乘:如果每一
- python买卖股票_121. 买卖股票的最佳时机(Python)
王小度
python买卖股票
题目难度:★☆☆☆☆类型:数组给定一个数组,它的第i个元素是一支给定股票第i天的价格。如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。注意你不能在买入股票前卖出股票。示例示例1:输入:[7,1,5,3,6,4]输出:5解释:在第2天(股票价格=1)的时候买入,在第5天(股票价格=6)的时候卖出,最大利润=6-1=5。注意利润不能是7-1=6,因为卖出价
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,