pytorch 乘法运算汇总与解析

pytorch 有多种乘法运算,在这里做一次全面的总结。

元素一一相乘

该操作又称作 "哈达玛积", 简单来说就是 tensor 元素逐个相乘。这个操作,是通过 也就是常规的乘号操作符定义的操作结果。torch.mul 是等价的。

import torch

def element_by_element():
    
    x = torch.tensor([1, 2, 3])
    y = torch.tensor([4, 5, 6])
    
    return x * y, torch.mul(x, y)

element_by_element()
(tensor([ 4, 10, 18]), tensor([ 4, 10, 18]))

这个操作是可以 broad cast 的。


def element_by_element_broadcast():
    
    x = torch.tensor([1, 2, 3])
    y = 2
    
    return x * y

element_by_element_broadcast()
tensor([2, 4, 6])

向量点乘

torch.matmul: If both tensors are 1-dimensional, the dot product (scalar) is returned.

如果都是1维的,返回的就是 dot product 结果

def vec_dot_product():
    
    x = torch.tensor([1, 2, 3])
    y = torch.tensor([4, 5, 6])
    
    return torch.matmul(x, y)
vec_dot_product()
tensor(32)

矩阵乘法

torch.matmul: If both arguments are 2-dimensional, the matrix-matrix product is returned.

如果都是2维,那么就是矩阵乘法的结果返回。与 torch.mm 是等价的,torch.mm 仅仅能处理的是矩阵乘法。

def matrix_multiple():
    
    x = torch.tensor([
        [1, 2, 3],
        [4, 5, 6]
    ])
    y = torch.tensor([
        [7, 8],
        [9, 10],
        [11, 12]
    ])
    
    return torch.matmul(x, y), torch.mm(x, y)

matrix_multiple()
(tensor([[ 58,  64],
         [139, 154]]), tensor([[ 58,  64],
         [139, 154]]))

vector 与 matrix 相乘

torch.matmul: If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.

如果第一个是 vector, 第二个是 matrix, 会在 vector 中增加一个维度。也就是 vector 变成了 与 matrix 相乘之后,变成 , 在结果中将 维 再去掉。

def vec_matrix():
    x = torch.tensor([1, 2, 3])
    y = torch.tensor([
        [7, 8],
        [9, 10],
        [11, 12]
    ])
    
    return torch.matmul(x, y)

vec_matrix()
tensor([58, 64])

matrix 与 vector 相乘

同样的道理, vector会被扩充一个维度。

def matrix_vec():
    x = torch.tensor([
        [1, 2, 3],
        [4, 5, 6]
    ])
    y = torch.tensor([
        7, 8, 9
    ])
    
    return torch.matmul(x, y)

matrix_vec()
tensor([ 50, 122])

带有batch_size 的 broad cast乘法

def batched_matrix_broadcasted_vector():
    x = torch.tensor([
        [
            [1, 2], [3, 4]
        ],
        [
            [5, 6], [7, 8]
        ]
    ])
    
    print(f"x shape: {x.size()} \n {x}")
    y = torch.tensor([1, 3])
    
    return torch.matmul(x, y)

batched_matrix_broadcasted_vector()
x shape: torch.Size([2, 2, 2]) 
 tensor([[[1, 2],
         [3, 4]],

        [[5, 6],
         [7, 8]]])





tensor([[ 7, 15],
        [23, 31]])

batched matrix x batched matrix

def batched_matrix_batched_matrix():
    x = torch.tensor([
        [
            [1, 2, 1], [3, 4, 4]
        ],
        [
            [5, 6, 2], [7, 8, 0]
        ]
    ])
    

    y = torch.tensor([
        [
            [1, 2], 
            [3, 4], 
            [5, 6]
        ],
        [
            [7, 8], 
            [9, 10], 
            [1, 2]
        ]
    ])
    
    
    print(f"x shape: {x.size()} \n y shape: {y.size()}")
    return torch.matmul(x, y)

xy = batched_matrix_batched_matrix()
print(f"xy shape: {xy.size()} \n {xy}")
x shape: torch.Size([2, 2, 3]) 
 y shape: torch.Size([2, 3, 2])
xy shape: torch.Size([2, 2, 2]) 
 tensor([[[ 12,  16],
         [ 35,  46]],

        [[ 91, 104],
         [121, 136]]])

上面的效果与 torch.bmm 是一样的。matmulbmm 功能更加强大,但是 bmm 的语义非常明确, bmm 处理的只能是 3维的。

def batched_matrix_batched_matrix_bmm():
    x = torch.tensor([
        [
            [1, 2, 1], [3, 4, 4]
        ],
        [
            [5, 6, 2], [7, 8, 0]
        ]
    ])
    

    y = torch.tensor([
        [
            [1, 2], 
            [3, 4], 
            [5, 6]
        ],
        [
            [7, 8], 
            [9, 10], 
            [1, 2]
        ]
    ])
    
    
    print(f"x shape: {x.size()} \n y shape: {y.size()}")
    return torch.bmm(x, y)

xy = batched_matrix_batched_matrix()
print(f"xy shape: {xy.size()} \n {xy}")
x shape: torch.Size([2, 2, 3]) 
 y shape: torch.Size([2, 3, 2])
xy shape: torch.Size([2, 2, 2]) 
 tensor([[[ 12,  16],
         [ 35,  46]],

        [[ 91, 104],
         [121, 136]]])

tensordot

这个函数还没有特别清楚。

def tesnordot():
    
    x = torch.tensor([
        [1, 2, 1], 
        [3, 4, 4]])
    

    y = torch.tensor([
        [7, 8], 
        [9, 10], 
        [1, 2]])
    
    print(f"x shape: {x.size()}, y shape: {y.size()}")
    return torch.tensordot(x, y, dims=([0], [1]))

tesnordot()
x shape: torch.Size([2, 3]), y shape: torch.Size([3, 2])





tensor([[31, 39,  7],
        [46, 58, 10],
        [39, 49,  9]])

你可能感兴趣的:(pytorch 乘法运算汇总与解析)