Leetcode 200 岛屿数量 二维DFS思路

Leetcode题目如下:

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例:

输入:grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
输出:1

可以看到这是一个二维的网络格子,最后要得出的是这个网络格子内有多少个岛屿 以1为岛屿 0为海洋,可以一下子想到搜索每一个岛屿。但是搜索之后怎么得到最后的解呢?因为只有“1"才是岛屿,并且与1 相连的”1“不能够算是另外一个岛屿,算是和刚才搜索到的”1"同属于一个岛屿,所以在子搜索的时候要注意不能再++岛屿数量,最后的结果是什么呢?最后的结果应该是深度搜索的次数,并且这个深度搜索不包含子搜索的次数,什么是子搜索?就是由深度搜索周边的子节点再次进行深度搜索的二次搜索。接下来看看题解和分析

出处:力扣

我们所熟悉的 DFS(深度优先搜索)问题通常是在树或者图结构上进行的。而我们今天要讨论的 DFS 问题,是在一种「网格」结构中进行的。岛屿问题是这类网格 DFS 问题的典型代表。网格结构遍历起来要比二叉树复杂一些,如果没有掌握一定的方法,DFS 代码容易写得冗长繁杂。

本文将以岛屿问题为例,展示网格类问题 DFS 通用思路,以及如何让代码变得简洁。

网格类问题的 DFS 遍历方法
网格问题的基本概念
我们首先明确一下岛屿问题中的网格结构是如何定义的,以方便我们后面的讨论。

网格问题是由 m×nm \times nm×n 个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。

岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿。

可以看到,二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。

第一个要素是访问相邻结点。二叉树的相邻结点非常简单,只有左子结点和右子结点两个。二叉树本身就是一个递归定义的结构:一棵二叉树,它的左子树和右子树也是一棵二叉树。那么我们的 DFS 遍历只需要递归调用左子树和右子树即可。

第二个要素是 判断 base case。一般来说,二叉树遍历的 base case 是 root == null。这样一个条件判断其实有两个含义:一方面,这表示 root 指向的子树为空,不需要再往下遍历了。另一方面,在 root == null 的时候及时返回,可以让后面的 root.left 和 root.right 操作不会出现空指针异常。

对于网格上的 DFS,我们完全可以参考二叉树的 DFS,写出网格 DFS 的两个要素:

首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c) 来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)、(r+1, c)、(r, c-1)、(r, c+1)。换句话说,网格结构是「四叉」的。

二叉树是先判断1 是不是叶子节点 2否则进行搜索(前中后)

其次,网格 DFS 中的 base case 是什么?从二叉树的 base case 对应过来,应该是网格中不需要继续遍历、grid[r][c] 会出现数组下标越界异常的格子,也就是那些超出网格范围的格子。

接下来得到了二维DFS的普遍搜索逻辑:

void dfs(int[][] grid, int r, int c) {
    // 判断 base case
    // 如果坐标 (r, c) 超出了网格范围,直接返回
    if (!inArea(grid, r, c)) {
        return;
    }
    // 访问上、下、左、右四个相邻结点
    dfs(grid, r - 1, c);
    dfs(grid, r + 1, c);
    dfs(grid, r, c - 1);
    dfs(grid, r, c + 1);
}

// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
    return 0 <= r && r < grid.length 
            && 0 <= c && c < grid[0].length;
}

这里看到只判断了坐标点是否在网格内(合法的坐标点),但是这样就会导致一种情况:重复搜索,就是在DFS相邻节点后接着DFS原本的点,及:正方形内无限循环,所以需要将每一次遍历完的点设为”0“(已经遍历过了)就可以避免重复遍历。

你可能感兴趣的:(深度优先,leetcode,算法)