L200. 岛屿数量 (Easy)
463. 岛屿的周长 (Easy)
695. 岛屿的最大面积 (Medium)
827. 最大人工岛 (Hard)
岛屿问题总结
二叉树dfs
二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。
void traverse(TreeNode root) {
// 判断 base case
if (root == null) {
return;
}
// 访问两个相邻结点:左子结点、右子结点
traverse(root.left);
traverse(root.right);
}
网格 DFS
void dfs(int[][] grid, int r, int c) {
// 判断 base case
// 如果坐标 (r, c) 超出了网格范围,直接返回
if (!inArea(grid, r, c)) {
return;
}
// 访问上、下、左、右四个相邻结点
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
}
// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
return 0 <= r && r < grid.length
&& 0 <= c && c < grid[0].length;
}
网格结构的 DFS 与二叉树的 DFS 最大的不同之处在于,遍历中可能遇到遍历过的结点。
如何避免这样的重复遍历呢?答案是标记已经遍历过的格子
每个格子可能取三个值:
0 —— 海洋格子
1 —— 陆地格子(未遍历过)
2 —— 陆地格子(已遍历过)
我们在框架代码中加入避免重复遍历的语句:
void dfs(int[][] grid, int r, int c) {
// 判断 base case
if (!inArea(grid, r, c)) {
return;
}
// 如果这个格子不是岛屿,直接返回
if (grid[r][c] != 1) {
return;
}
grid[r][c] = 2; // 将格子标记为「已遍历过」
// 访问上、下、左、右四个相邻结点
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
}
// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
return 0 <= r && r < grid.length
&& 0 <= c && c < grid[0].length;
}
作者:nettee
链接:https://leetcode-cn.com/problems/number-of-islands/solution/dao-yu-lei-wen-ti-de-tong-yong-jie-fa-dfs-bian-li-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int res = 0;
for(int i=0;i<grid.size();i++){
for(int j =0;j<grid[0].size();j++){
if(grid[i][j] == '1'){
res++;
dfs(grid,i,j);
}
}
}
return res;
}
void dfs(vector<vector<char>>& grid,int i,int j){
if(!isAre(grid,i,j)) return;
if(grid[i][j] != '1') return;
grid[i][j] = 2;
dfs(grid,i-1,j);
dfs(grid,i+1,j);
dfs(grid,i,j-1);
dfs(grid,i,j+1);
}
bool isAre(vector<vector<char>>& grid,int i,int j){
return 0<=i && 0<= j && i<grid.size() && j<grid[i].size() ;
}
};