首发于 帅地玩编程
写文章
动态规划详细介绍_第1张图片

告别动态规划,连刷 40 道题,我总结了这些套路,看不懂你打我(万字长文)

虚调子
代码随想录
渔舟唱晚
浅吻板牙
等 13,136 人赞同了该文章

-------------------2022.3.1更新----------------

感谢大家的厚爱,都一万多赞了,受宠若惊,帅地2023这一年也写了一个算法课程,发布在自己的网站(playoffer.cn

动态规划详细介绍_第2张图片
动态规划详细介绍_第3张图片

如果你感兴趣,那么欢迎来看看哦:

拿下中大厂算法面试,14大算法专题​ www.playoffer.cn/?p=1356动态规划详细介绍_第4张图片

--------------------------------以下正文----------------------------

动态规划难吗?说实话,我觉得很难,特别是对于初学者来说,我当时入门动态规划的时候,是看 0-1 背包问题,当时真的是一脸懵逼。后来,我遇到动态规划的题,看的懂答案,但就是自己不会做,不知道怎么下手。就像做递归的题,看的懂答案,但下不了手,关于递归的,我之前也写过一篇套路的文章,如果对递归不大懂的,强烈建议看一看:为什么你学不会递归,告别递归,谈谈我的经验

对于动态规划,春招秋招时好多题都会用到动态规划,一气之下,再 leetcode 连续刷了几十道题


动态规划详细介绍_第5张图片
动态规划详细介绍_第6张图片


之后,豁然开朗 ,感觉动态规划也不是很难,今天,我就来跟大家讲一讲,我是怎么做动态规划的题的,以及从中学到的一些套路。相信你看完一定有所收获

如果你对动态规划感兴趣,或者你看的懂动态规划,但却不知道怎么下手,那么我建议你好好看以下,这篇文章的写法,和之前那篇讲递归的写法,是差不多一样的,将会举大量的例子。如果一次性看不完,建议收藏,同时别忘了素质三连

为了兼顾初学者,我会从最简单的题讲起,后面会越来越难,最后面还会讲解,该如何优化。因为 80% 的动规都是可以进行优化的。不过我得说,如果你连动态规划是什么都没听过,可能这篇文章你也会压力山大。

一、动态规划的三大步骤

动态规划,无非就是利用历史记录,来避免我们的重复计算。而这些历史记录,我们得需要一些变量来保存,一般是用一维数组或者二维数组来保存。下面我们先来讲下做动态规划题很重要的三个步骤,

如果你听不懂,也没关系,下面会有很多例题讲解,估计你就懂了。之所以不配合例题来讲这些步骤,也是为了怕你们脑袋乱了

第一步骤:定义数组元素的含义,上面说了,我们会用一个数组,来保存历史数组,假设用一维数组 dp[] 吧。这个时候有一个非常非常重要的点,就是规定你这个数组元素的含义,例如你的 dp[i] 是代表什么意思?

第二步骤:找出数组元素之间的关系式,我觉得动态规划,还是有一点类似于我们高中学习时的归纳法的,当我们要计算 dp[n] 时,是可以利用 dp[n-1],dp[n-2].....dp[1],来推出 dp[n] 的,也就是可以利用历史数据来推出新的元素值,所以我们要找出数组元素之间的关系式,例如 dp[n] = dp[n-1] + dp[n-2],这个就是他们的关系式了。而这一步,也是最难的一步,后面我会讲几种类型的题来说。

学过动态规划的可能都经常听到 最优子结构,把大的问题拆分成小的问题,说时候,最开始的时候,我是对 最优子结构一梦懵逼的。估计你们也听多了,所以这一次,我将 换一种形式来讲,不再是各种子问题,各种最优子结构。所以大佬可别喷我再乱讲,因为我说了,这是我自己平时做题的套路。

第三步骤:找出初始值。学过数学归纳法的都知道,虽然我们知道了数组元素之间的关系式,例如 dp[n] = dp[n-1] + dp[n-2],我们可以通过 dp[n-1] 和 dp[n-2] 来计算 dp[n],但是,我们得知道初始值啊,例如一直推下去的话,会由 dp[3] = dp[2] + dp[1]。而 dp[2] 和 dp[1] 是不能再分解的了,所以我们必须要能够直接获得 dp[2] 和 dp[1] 的值,而这,就是所谓的初始值

由了初始值,并且有了数组元素之间的关系式,那么我们就可以得到 dp[n] 的值了,而 dp[n] 的含义是由你来定义的,你想求什么,就定义它是什么,这样,这道题也就解出来了。

不懂?没事,我们来看三四道例题,我讲严格按这个步骤来给大家讲解。

二、案例详解

案例一、简单的一维 DP

问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

(1)、定义数组元素的含义

按我上面的步骤说的,首先我们来定义 dp[i] 的含义,我们的问题是要求青蛙跳上 n 级的台阶总共由多少种跳法,那我们就定义 dp[i] 的含义为:跳上一个 i 级的台阶总共有 dp[i] 种跳法。这样,如果我们能够算出 dp[n],不就是我们要求的答案吗?所以第一步定义完成。

(2)、找出数组元素间的关系式

我们的目的是要求 dp[n],动态规划的题,如你们经常听说的那样,就是把一个规模比较大的问题分成几个规模比较小的问题,然后由小的问题推导出大的问题。也就是说,dp[n] 的规模为 n,比它规模小的是 n-1, n-2, n-3.... 也就是说,dp[n] 一定会和 dp[n-1], dp[n-2]....存在某种关系的。我们要找出他们的关系。

那么问题来了,怎么找?

这个怎么找,是最核心最难的一个,我们必须回到问题本身来了,来寻找他们的关系式,dp[n] 究竟会等于什么呢?

对于这道题,由于情况可以选择跳一级,也可以选择跳两级,所以青蛙到达第 n 级的台阶有两种方式

一种是从第 n-1 级跳上来

一种是从第 n-2 级跳上来

由于我们是要算所有可能的跳法的,所以有 dp[n] = dp[n-1] + dp[n-2]。

(3)、找出初始条件

当 n = 1 时,dp[1] = dp[0] + dp[-1],而我们是数组是不允许下标为负数的,所以对于 dp[1],我们必须要直接给出它的数值,相当于初始值,显然,dp[1] = 1。一样,dp[0] = 0.(因为 0 个台阶,那肯定是 0 种跳法了)。于是得出初始值:

dp[0] = 0. dp[1] = 1. 即 n <= 1 时,dp[n] = n.

三个步骤都做出来了,那么我们就来写代码吧,代码会详细注释滴。

int f( int n ){
    if(n <= 1)
    return n;
    // 先创建一个数组来保存历史数据
    int[] dp = new int[n+1];
    // 给出初始值
    dp[0] = 0;
    dp[1] = 1;
    // 通过关系式来计算出 dp[n]
    for(int i = 2; i <= n; i++){
        dp[i] = dp[i-1] + dp[i-2];
    }
    // 把最终结果返回
    return dp[n];
}

(4)、再说初始化

大家先想以下,你觉得,上面的代码有没有问题?

答是有问题的,还是错的,错在对初始值的寻找不够严谨,这也是我故意这样弄的,意在告诉你们,关于初始值的严谨性。例如对于上面的题,当 n = 2 时,dp[2] = dp[1] + dp[0] = 1。这显然是错误的,你可以模拟一下,应该是 dp[2] = 2。

也就是说,在寻找初始值的时候,一定要注意不要找漏了,dp[2] 也算是一个初始值,不能通过公式计算得出。有人可能会说,我想不到怎么办?这个很好办,多做几道题就可以了。

下面我再列举三道不同的例题,并且,再在未来的文章中,我也会持续按照这个步骤,给大家找几道有难度且类型不同的题。下面这几道例题,不会讲的特性详细哈。实际上 ,上面的一维数组是可以把空间优化成更小的,不过我们现在先不讲优化的事,下面的题也是,不讲优化版本。

案例二:二维数组的 DP

我做了几十道 DP 的算法题,可以说,80% 的题,都是要用二维数组的,所以下面的题主要以二维数组为主,当然有人可能会说,要用一维还是二维,我怎么知道?这个问题不大,接着往下看。

问题描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?


动态规划详细介绍_第7张图片
动态规划详细介绍_第8张图片


这是 leetcode 的 62 号题: leetcode-cn.com/problem

还是老样子,三个步骤来解决。

步骤一、定义数组元素的含义

由于我们的目的是从左上角到右下角一共有多少种路径,那我们就定义 dp[i] [j]的含义为:当机器人从左上角走到(i, j) 这个位置时,一共有 dp[i] [j] 种路径。那么,dp[m-1] [n-1] 就是我们要的答案了。

注意,这个网格相当于一个二维数组,数组是从下标为 0 开始算起的,所以 右下角的位置是 (m-1, n - 1),所以 dp[m-1] [n-1] 就是我们要找的答案。

步骤二:找出关系数组元素间的关系式

想象以下,机器人要怎么样才能到达 (i, j) 这个位置?由于机器人可以向下走或者向右走,所以有两种方式到达

一种是从 (i-1, j) 这个位置走一步到达

一种是从(i, j - 1) 这个位置走一步到达

因为是计算所有可能的步骤,所以是把所有可能走的路径都加起来,所以关系式是 dp[i] [j] = dp[i-1] [j] + dp[i] [j-1]。

步骤三、找出初始值

显然,当 dp[i] [j] 中,如果 i 或者 j 有一个为 0,那么还能使用关系式吗?答是不能的,因为这个时候把 i - 1 或者 j - 1,就变成负数了,数组就会出问题了,所以我们的初始值是计算出所有的 dp[0] [0….n-1] 和所有的 dp[0….m-1] [0]。这个还是非常容易计算的,相当于计算机图中的最上面一行和左边一列。因此初始值如下:

dp[0] [0….n-1] = 1; // 相当于最上面一行,机器人只能一直往右走

dp[0…m-1] [0] = 1; // 相当于最左面一列,机器人只能一直往下走

撸代码

三个步骤都写出来了,直接看代码

public static int uniquePaths(int m, int n) {
    if (m <= 0 || n <= 0) {
        return 0;
    }
int[][] dp = new int[m][n]; //