【风控场景】互利网上数字金融典型场景: 网络支付

转自博客慧安金科:https://blog.csdn.net/hajk2017/article/details/80771727
感谢!

       我国网络支付发展迅速,从 2013 年开始,网络支付市场的交易规模平均以 50% 的年均增速增长。2017 年,我国网络支付交易规模达到近 154.9 万亿元,同比增长率接近 44.3%。网络支付在线下小额和零售领域等适用场景不断丰富,渗透于消费、金融、个人应用等各个领域。

       新的支付形式也催生了新的欺诈手段。在支付环节,黑色产业集团往往通过社工方式和技术手段,盗取利用个人姓名、手机号码、身份证号码和银行卡号等直接关系账户安全的要素,并进一步用于进行精准诈骗、恶意营销。虚假 WiFi、病毒二维码、盗版 APP 客户端以及木马链接等是盗取用户私人信息的主要手段,获得的关键信息被收入数据库分类储存。其中,账户信息(如游戏账户、金融账户)通过黑色产业链进行金融犯罪和变现,用户真实信息除了贩卖外,更多用于商城盗刷。

 

网络支付欺诈案例:盗用账号支付

      某大学生发现自己银行卡里的 5 万元“不翼而飞”。反复查询,他被通知自己在某电商平台注册了一个新账号,购买了高达 49966 元商品。实质上并非本人的购买行为。其实,该商城风控部门利用其风控体系在支付的那一刻已触发预警。接到预警后,风控负责人快速安排对这一订单的拦截,同时安排发货以进一步锁定嫌疑人,最终帮助挽回损失。

该案例是账号盗用的典例,其涉及四步具体操作:

 

第一步:放马。该团伙在大学城周边,通过伪基站发送带有木马病毒链接的伪装短信,该学生在点击链接后,用户名及密码均已泄露。

第二步:操盘。由于直接盗刷银行卡难度较高、风险较大,骗子掌握各类信息之后,便想起通过商城购物的方式来进行变现。

第三步:洗料。注册完账户,绑定银行卡之后,就会通过网上商城购买高价值物品,比如黄金、手机等。并通过对来电进行拦截或者设置呼叫转移,使得商品到达欺诈团伙手中。

第四步:变现。通过地下黑色产业链销赃网络,将购买来的物品变现、分赃。

反欺诈手段

 

该案例中,主要运用了行为序列、生物探针和关系图谱技术对支付环节的前中后期进行了风险预判:

      首先,行为序列技术发现了购买记录的异常。行为序列技术记录了该学生在平日购物时的购物金额、浏览时长、对比行为等因素,发现了购物金额不超过 1000 多元、平时要花时间进行同类对比、寻找优惠券的该学生,本次仅浏览了十分钟便下单购买昂贵的商品,马上触发了预警。

      其次,生物探针技术发现本次购买行为与往常不同。生物探针技术能够根据用户使用 APP 的按压力度、手指触面、滑屏速度等 120 多个指标,判断用户的使用习惯,因此,检测出本次购物中的异常使用情况。

      最后,关系图谱技术,通过用户关系估算用户的信用,同时周围与之相关人的信用影响到对该用户信用评估。关系图谱技术通过分析发现该学生对本商品的需求并不高,因此也触发了预警。

反欺诈效果和可移植性

      行为序列、生物探针、关系图谱等技术综合运用,可以有效识别支付环节的用户风险,同时可向其他场景复制、移植。

      行为序列技术对用户购物行为、地址位置信息、过往订单信息、信用卡交易详情等信息进行实时监测,形成多维度用户画像。除了应用于用户身份识别和反欺诈,行为序列分析还能实现”千人千面”的精准营销。根据用户的历史购买和浏览习惯等信息可以推测出用户的年龄、性别、职业、爱好等身份特征,比如某位用户经常浏览母婴网站并购买孕期用品,则可推测该用户为一位准妈妈,进而可根据这些信息在不同时间为用户推荐恰当的商品,提高购买率。

      生物探针技术打破了传统判别用户身份的逻辑,基于用户的行为特征模型,而不是仅仅依靠密码、验证码这些易被盗用的数字信息识别用户,这种技术应用在金融场景中效果尤其明显,但同时也可向其他非金融领域复制、移植。一是可以将生物探针这一技术手段广泛应用于社交、游戏、购物等各类移动 APP 账户安全保护中。智能手机及各类账户中存储着用户的大量信息,包括朋友联系方式、照片、数字资产甚至工作机密资料,一旦手机丢失或账户被盗,后果难以估量。目前应用的账户安全保护技术主要为数字密码、手势密码、手机验证码等数字信息,容易被不法分子攻击、破解,若加入生物探针技术,将能够从更多的维度判别用户身份,且不存在被盗风险。二是生物探针技术可以同账户安全险、手机丢失险等网络保险产品结合,帮助保险公司完善产品结构。生物探针技术集合上百项指标生成特有的用户行为特征模型,可有效进行人机识别和本人识别。若应用于账户安全险、手机丢失险的产品设计中,可有效降低出险率,同时帮助用户进行安全管理,让保险产品不仅能管理风险,还能保障安全。

      关系图谱技术可以进行涉黑群体挖掘。通过记录用户节点信息,以及所有在这些节点上发生行为的相关行为的连接,最终把与之相关的一系列用户和行为都描述出来。它能有效识别数据造假、组团欺诈、辅助信贷审核、失联企业管理等等。在这个维度上做风控,可以将隐蔽在后面的欺诈行为提前预防、并拦截在体系之外。除了能识别金融领域的欺诈风险之外,关系图谱技术还可对持股结构、高管关系、涉诉案件等方面的欺诈行为有效识别。关系图谱技术的主要特点是能够勾勒出看似不相关的主体间的隐含关系,从而对潜在风险的识别非常有效,从这一点上讲,关系图谱技术非常契合金融业务尤其是数字金融业务参与主体多、流程冗长的特点,能够在复杂的业务流程中梳理出一条简单清晰的主线,这不仅能够识别欺诈行为,而且对于某个业务场景下全局性金融风险的识别防范具有非常现实的意义。

 

你可能感兴趣的:(工程应用:评分建模,科技金融,数字金融)