前言 |
---|
本文只是例题,建议先参考具体如何做这类型例题。请到主文章中参考:https://blog.csdn.net/grd_java/article/details/132246630
例题 |
---|
- 例1: lim x → 0 x s i n x 2 − 2 ( 1 − c o s x ) s i n x x 4 {\begin{aligned} \lim\limits_{x \rightarrow 0} \dfrac{xsinx^2-2(1-cosx)sinx}{x^4} \\\end{aligned}} x→0limx4xsinx2−2(1−cosx)sinx
洛必达太麻烦,等价代换发现是+/-操作,而且=0,这里用泰勒展开(注意,下面公式的x可以换成任意值,比如 x 2 、 2 x x^2、2x x2、2x),注意展开后,分子次数不要比分母大
s i n x = x − x 3 3 ! + x 5 5 ! − . . . + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + O ( x 2 n + 1 ) sinx = x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - ...+\dfrac{(-1)^{n}x^{2n+1}}{(2n+1)!}+O(x^{2n+1}) sinx=x−3!x3+5!x5−...+(2n+1)!(−1)nx2n+1+O(x2n+1)
c o s x = 1 − x 2 2 ! + x 4 4 ! − . . . + − 1 n x 2 n ( 2 n ) ! + O ( x 2 n ) cosx = 1 - \dfrac{x^2}{2!} + \dfrac{x^4}{4!} - ...+\dfrac{-1^{n}x^{2n}}{(2n)!}+O(x^{2n}) cosx=1−2!x2+4!x4−...+(2n)!−1nx2n+O(x2n)原式 = lim x → 0 x s i n x 2 − 2 s i n x + 2 s i n x c o s x x 4 = lim x → 0 x s i n x 2 − 2 s i n x + s i n ( 2 x ) x 4 ( 由二倍角公式得 ) {原式=}{\begin{aligned}\lim\limits_{x \rightarrow 0} \dfrac{xsinx^2-2sinx + 2sinx~cosx}{x^4} = \lim\limits_{x \rightarrow 0} \dfrac{xsinx^2-2sinx + sin(2x)}{x^4}(由二倍角公式得) \\\\\end{aligned}} 原式=x→0limx4xsinx2−2sinx+2sinx cosx=x→0limx4xsinx2−2sinx+sin(2x)(由二倍角公式得)
= 泰勒展开 lim x → 0 x ⋅ ( x 2 + O ( x 2 ) ) − 2 ( x − x 3 3 ! + O ( x 3 ) ) + ( 2 x − ( 2 x ) 3 3 ! + O ( ( 2 x ) 3 ) ) x 4 {\begin{aligned} \xlongequal{泰勒展开}\lim\limits_{x \rightarrow 0} \dfrac{x\cdot(x^2+O(x^2))-2(x-\dfrac{x^3}{3!}+O(x^3))+(2x-\dfrac{(2x)^3}{3!}+O((2x)^3))}{x^4} \\\\\end{aligned}} 泰勒展开x→0limx4x⋅(x2+O(x2))−2(x−3!x3+O(x3))+(2x−3!(2x)3+O((2x)3))
= 合并过程中,忽略 O ( ) , 最后末尾 + 分母的高价无穷小即可 lim x → 0 x 3 − 2 x + x 3 3 + 2 x − 4 x 3 3 + O ( x 4 ) x 4 {\begin{aligned} \xlongequal{合并过程中,忽略O(),最后末尾+分母的高价无穷小即可}\lim\limits_{x \rightarrow 0} \dfrac{x^3-2x+\dfrac{x^3}{3}+2x-\dfrac{4x^3}{3}+O(x^4)}{x^4} \\\\\end{aligned}} 合并过程中,忽略O(),最后末尾+分母的高价无穷小即可x→0limx4x3−2x+3x3+2x−34x3+O(x4)
= lim x → 0 O ( x 4 ) x 4 = 0 {\begin{aligned} =\lim\limits_{x \rightarrow 0} \dfrac{O(x^4)}{x^4} = 0 \\\\\end{aligned}} =x→0limx4O(x4)=0
- 例2: lim x → 0 ( 1 − c o s x ) ( 1 − c o s x 3 ) s i n 2 x 2 {\begin{aligned} \lim\limits_{x \rightarrow 0} \dfrac{(1-\sqrt{cosx})(1-\sqrt[3]{cosx})}{sin^2x^2} \\\end{aligned}} x→0limsin2x2(1−cosx)(1−3cosx)
方法1:等价代换 1 − c o s α x ∼ α 2 x 2 , s i n α ∼ α 1-cos^\alpha x \thicksim \dfrac{\alpha }{2}x^2,sin\alpha \thicksim \alpha 1−cosαx∼2αx2,sinα∼α
原式 = lim x → 0 ( 1 2 2 x 2 ) ( 1 3 2 x 2 ) s i n x 2 ⋅ s i n x 2 {\begin{aligned} 原式=\lim\limits_{x \rightarrow 0} \dfrac{(\dfrac{\dfrac{1}{2}}{2}x^2)(\dfrac{\dfrac{1}{3}}{2}x^2)}{sinx^2\cdot sinx^2} \\\\\end{aligned}} 原式=x→0limsinx2⋅sinx2(221x2)(231x2)
= lim x → 0 1 24 x 4 x 2 ⋅ x 2 = 1 24 {\begin{aligned} =\lim\limits_{x \rightarrow 0} \dfrac{\dfrac{1}{24}x^4}{x^2\cdot x^2} = \dfrac{1}{24} \\\\\end{aligned}} =x→0limx2⋅x2241x4=241方法2:拉格朗日中值定理: f ( b ) − f ( a ) = f ′ ( ξ ) ⋅ ( b − a ) f(b) - f(a) = f^{'}(\xi)·(b-a) f(b)−f(a)=f′(ξ)⋅(b−a)
{ 1 、思路:想办法凑出 1 − ( c o s x ) α 来用拉格朗日中值定理 2 、设: f ( ξ ) = ξ α , 有 f ′ ( ξ ) = α ⋅ ξ α − 1 则 f ( 1 ) − f ( c o s x ) = 1 − ( c o s x ) α = α ⋅ ξ α − 1 ⋅ ( 1 − c o s x ) , c o s x < ξ < 1. 3 、又因为当 x → 0 , 则 c o s x 无限趋近于 1 ,根据夹逼准则, ξ 无限趋近于 1 则 1 − ( c o s x ) α = α ⋅ ( 1 − c o s x ) 。 4 、因此:原式 = lim x → 0 1 2 ( 1 − c o s x ) ⋅ 1 3 ( 1 − c o s x ) x 4 = lim x → 0 1 2 ( 1 2 x 2 ) ⋅ 1 3 ( 1 2 x 2 ) x 4 = 1 24 {\begin{cases} \\1、思路:想办法凑出1-(cosx)^\alpha来用拉格朗日中值定理\\ 2、设:f(\xi) = \xi^{\alpha},有f^{'}(\xi) = \alpha \cdot \xi^{\alpha - 1} \\ 则f(1) - f(cosx) = 1-(cosx)^\alpha = \alpha \cdot \xi^{\alpha - 1} \cdot (1-cosx),cosx < \xi < 1.\\ 3、又因为当x\xrightarrow{}0,则cosx无限趋近于1,根据夹逼准则,\xi无限趋近于1\\ 则1-(cosx)^\alpha = \alpha \cdot (1-cosx)。\\ 4、因此:原式= \lim\limits_{x \rightarrow 0} \dfrac{\dfrac{1}{2}(1-cosx)\cdot \dfrac{1}{3}(1-cosx)}{x^4}\\ = \lim\limits_{x \rightarrow 0} \dfrac{\dfrac{1}{2}(\dfrac{1}{2}x^2)\cdot \dfrac{1}{3}(\dfrac{1}{2}x^2)}{x^4} = \dfrac{1}{24} \\\\\end{cases}} ⎩ ⎨ ⎧1、思路:想办法凑出1−(cosx)α来用拉格朗日中值定理2、设:f(ξ)=ξα,有f′(ξ)=α⋅ξα−1则f(1)−f(cosx)=1−(cosx)α=α⋅ξα−1⋅(1−cosx),cosx<ξ<1.3、又因为当x0,则cosx无限趋近于1,根据夹逼准则,ξ无限趋近于1则1−(cosx)α=α⋅(1−cosx)。4、因此:原式=x→0limx421(1−cosx)⋅31(1−cosx)=x→0limx421(21x2)⋅31(21x2)=241
- 例3: lim x → 0 ( 1 − c o s x ) ( 1 − c o s x 3 ) . . . ( 1 − c o s x n ) ( 1 − c o s x ) n − 1 , 分子 c o s 1 2 x . . . . c o s 1 n 次 , 所以共 n − 2 + 1 = n − 1 项 {\begin{aligned} \lim\limits_{x \rightarrow 0} \dfrac{(1-\sqrt{cosx})(1-\sqrt[3]{cosx})...(1-\sqrt[n]{cosx})}{(1-cosx)^{n-1}},分子cos^{\dfrac{1}{2}}x....cos^\dfrac{1}{n}次,所以共n-2+1=n-1项 \\\\\end{aligned}} x→0lim(1−cosx)n−1(1−cosx)(1−3cosx)...(1−ncosx),分子cos21x....cosn1次,所以共n−2+1=n−1项
方法1:等价代换 1 − c o s α x ∼ α 2 x 2 1-cos^\alpha x \thicksim \dfrac{\alpha }{2}x^2 1−cosαx∼2αx2
{ 原式 = lim x → 0 ( 1 4 x 2 ) ( 1 6 x 2 ) . . . ( 1 2 n x 2 ) ( 1 2 x 2 ) n − 1 = lim x → 0 ( x 2 ) n − 1 ( 1 4 ) ( 1 6 ) . . . ( 1 2 n ) ( 1 2 ) n − 1 ( x 2 ) n − 1 = lim x → 0 ( 1 2 ) n − 1 ( 1 2 ) ( 1 3 ) . . . ( 1 n ) ( 1 2 ) n − 1 = 1 n ! {\begin{cases} 原式=\lim\limits_{x \rightarrow 0} \dfrac{(\dfrac{1}{4}x^2)(\dfrac{1}{6}x^2)...(\dfrac{1}{2n}x^2)}{(\dfrac{1}{2}x^2)^{n-1}}=\lim\limits_{x \rightarrow 0} \dfrac{(x^2)^{n-1}(\dfrac{1}{4})(\dfrac{1}{6})...(\dfrac{1}{2n})}{(\dfrac{1}{2})^{n-1}(x^2)^{n-1}}\\ =\lim\limits_{x \rightarrow 0} \dfrac{(\dfrac{1}{2})^{n-1}(\dfrac{1}{2})(\dfrac{1}{3})...(\dfrac{1}{n})}{(\dfrac{1}{2})^{n-1}} = \dfrac{1}{n!} \\\\\end{cases}} ⎩ ⎨ ⎧原式=x→0lim(21x2)n−1(41x2)(61x2)...(2n1x2)=x→0lim(21)n−1(x2)n−1(x2)n−1(41)(61)...(2n1)=x→0lim(21)n−1(21)n−1(21)(31)...(n1)=n!1
方法2:拉格朗日中值定理: f ( b ) − f ( a ) = f ′ ( ξ ) ⋅ ( b − a ) f(b) - f(a) = f^{'}(\xi)·(b-a) f(b)−f(a)=f′(ξ)⋅(b−a)
{ 1 、设: f ( ξ ) = ξ α , 有 f ′ ( ξ ) = α ⋅ ξ α − 1 则 f ( 1 ) − f ( c o s x ) = 1 − ( c o s x ) α = α ⋅ ξ α − 1 ⋅ ( 1 − c o s x ) , c o s x < ξ < 1. 2 、又因为当 x → 0 , 则 c o s x 无限趋近于 1 ,根据夹逼准则, ξ 无限趋近于 1 则 1 − ( c o s x ) α = α ⋅ ( 1 − c o s x ) 。 3 、因此:原式 = lim x → 0 [ 1 2 ( 1 − c o s x ) ] [ 1 3 ( 1 − c o s x ) ] . . . [ 1 n ( 1 − c o s x ) ] ( 1 − c o s x ) n − 1 = lim x → 0 ( 1 − c o s x ) n − 1 ( 1 2 ⋅ 1 3 ⋅ 1 n ) ( 1 − c o s x ) n − 1 = 1 n ! {\begin{cases} \\1、设:f(\xi) = \xi^{\alpha},有f^{'}(\xi) = \alpha \cdot \xi^{\alpha - 1} \\ 则f(1) - f(cosx) = 1-(cosx)^\alpha = \alpha \cdot \xi^{\alpha - 1} \cdot (1-cosx),cosx < \xi < 1.\\ 2、又因为当x\xrightarrow{}0,则cosx无限趋近于1,根据夹逼准则,\xi无限趋近于1\\ 则1-(cosx)^\alpha = \alpha \cdot (1-cosx)。\\ 3、因此:原式= \lim\limits_{x \rightarrow 0} \dfrac{[\dfrac{1}{2}(1-cosx)][\dfrac{1}{3}(1-cosx)]...[\dfrac{1}{n}(1-cosx)]}{(1-cosx)^{n-1}}\\ = \lim\limits_{x \rightarrow 0} \dfrac{(1-cosx)^{n-1}(\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot\dfrac{1}{n})}{(1-cosx)^{n-1}} = \dfrac{1}{n!} \\\\\end{cases}} ⎩ ⎨ ⎧1、设:f(ξ)=ξα,有f′(ξ)=α⋅ξα−1则f(1)−f(cosx)=1−(cosx)α=α⋅ξα−1⋅(1−cosx),cosx<ξ<1.2、又因为当x0,则cosx无限趋近于1,根据夹逼准则,ξ无限趋近于1则1−(cosx)α=α⋅(1−cosx)。3、因此:原式=x→0lim(1−cosx)n−1[21(1−cosx)][31(1−cosx)]...[n1(1−cosx)]=x→0lim(1−cosx)n−1(1−cosx)n−1(21⋅31⋅n1)=n!1