1.接收ros图像
2.yolo识别
3.sort跟踪
yolo.h
#ifndef YOLO_H
#define YOLO_H
#include
#include
#include "NvInfer.h"
#include "NvInferPlugin.h"
#include "NvInferRuntimeCommon.h"
#include "NvOnnxParser.h"
#include
#include
#include
#include
#include
#include
#include
#include
using nvinfer1::Dims2;
using nvinfer1::Dims3;
using nvinfer1::IBuilder;
using nvinfer1::IBuilderConfig;
using nvinfer1::ICudaEngine;
using nvinfer1::IExecutionContext;
using nvinfer1::IHostMemory;
using nvinfer1::ILogger;
using nvinfer1::INetworkDefinition;
using Severity = nvinfer1::ILogger::Severity;
using cv::Mat;
using std::array;
using std::cout;
using std::endl;
using std::ifstream;
using std::ios;
using std::ofstream;
using std::string;
using std::vector;
class Logger : public ILogger {
public:
void log(Severity severity, const char* msg) noexcept override {
if (severity != Severity::kINFO) {
std::cout << msg << std::endl;
}
}
};
class Yolo {
public:
Yolo(char* model_path);
float letterbox(
const cv::Mat& image,
cv::Mat& out_image,
const cv::Size& new_shape,
int stride,
const cv::Scalar& color,
bool fixed_shape,
bool scale_up);
float* blobFromImage(cv::Mat& img);
void draw_objects(const cv::Mat& img, float* Boxes, int* ClassIndexs, int* BboxNum, float* Scores);
void Init(char* model_path);
void Infer(
int aWidth,
int aHeight,
int aChannel,
unsigned char* aBytes,
float* Boxes,
int* ClassIndexs,
int* BboxNum,
float* Scores);
~Yolo();
private:
nvinfer1::ICudaEngine* engine = nullptr;
nvinfer1::IRuntime* runtime = nullptr;
nvinfer1::IExecutionContext* context = nullptr;
cudaStream_t stream = nullptr;
void* buffs[5];
int iH, iW, in_size, out_size1, out_size2, out_size3, out_size4;
Logger gLogger;
};
#endif // YOLO_H
yolo.cpp
#include "yolo.h"
float Yolo::letterbox(
const cv::Mat& image,
cv::Mat& out_image,
const cv::Size& new_shape = cv::Size(640, 640),
int stride = 32,
const cv::Scalar& color = cv::Scalar(114, 114, 114),
bool fixed_shape = false,
bool scale_up = true) {
cv::Size shape = image.size();
float r = std::min(
(float)new_shape.height / (float)shape.height, (float)new_shape.width / (float)shape.width);
if (!scale_up) {
r = std::min(r, 1.0f);
}
int newUnpad[2]{
(int)std::round((float)shape.width * r), (int)std::round((float)shape.height * r)};
cv::Mat tmp;
if (shape.width != newUnpad[0] || shape.height != newUnpad[1]) {
cv::resize(image, tmp, cv::Size(newUnpad[0], newUnpad[1]));
} else {
tmp = image.clone();
}
float dw = new_shape.width - newUnpad[0];
float dh = new_shape.height - newUnpad[1];
if (!fixed_shape) {
dw = (float)((int)dw % stride);
dh = (float)((int)dh % stride);
}
dw /= 2.0f;
dh /= 2.0f;
int top = int(std::round(dh - 0.1f));
int bottom = int(std::round(dh + 0.1f));
int left = int(std::round(dw - 0.1f));
int right = int(std::round(dw + 0.1f));
cv::copyMakeBorder(tmp, out_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
return 1.0f / r;
}
float* Yolo::blobFromImage(cv::Mat& img) {
float* blob = new float[img.total() * 3];
int channels = 3;
int img_h = img.rows;
int img_w = img.cols;
for (size_t c = 0; c < channels; c++) {
for (size_t h = 0; h < img_h; h++) {
for (size_t w = 0; w < img_w; w++) {
blob[c * img_w * img_h + h * img_w + w] = (float)img.at(h, w)[c] / 255.0;
}
}
}
return blob;
}
void Yolo::draw_objects(const cv::Mat& img, float* Boxes, int* ClassIndexs, int* BboxNum, float* Scores) {
for (int j = 0; j < BboxNum[0]; j++) {
cv::Rect rect(Boxes[j * 4], Boxes[j * 4 + 1], Boxes[j * 4 + 2], Boxes[j * 4 + 3]);
cv::rectangle(img, rect, cv::Scalar(0x27, 0xC1, 0x36), 2);
cv::putText(
img,
std::to_string(ClassIndexs[j])+":"+std::to_string(Scores[j]),
cv::Point(rect.x, rect.y - 1),
cv::FONT_HERSHEY_PLAIN,
1.2,
cv::Scalar(0xFF, 0xFF, 0xFF),
2);
//cv::imwrite("result.jpg", img);
}
}
Yolo::Yolo(char* model_path) {
ifstream ifile(model_path, ios::in | ios::binary);
if (!ifile) {
cout << "read serialized file failed\n";
std::abort();
}
ifile.seekg(0, ios::end);
const int mdsize = ifile.tellg();
ifile.clear();
ifile.seekg(0, ios::beg);
vector buf(mdsize);
ifile.read(&buf[0], mdsize);
ifile.close();
cout << "model size: " << mdsize << endl;
runtime = nvinfer1::createInferRuntime(gLogger);
initLibNvInferPlugins(&gLogger, "");
engine = runtime->deserializeCudaEngine((void*)&buf[0], mdsize, nullptr);
auto in_dims = engine->getBindingDimensions(engine->getBindingIndex("images"));
iH = in_dims.d[2];
iW = in_dims.d[3];
in_size = 1;
for (int j = 0; j < in_dims.nbDims; j++) {
in_size *= in_dims.d[j];
}
auto out_dims1 = engine->getBindingDimensions(engine->getBindingIndex("num_dets"));
out_size1 = 1;
for (int j = 0; j < out_dims1.nbDims; j++) {
out_size1 *= out_dims1.d[j];
}
auto out_dims2 = engine->getBindingDimensions(engine->getBindingIndex("det_boxes"));
out_size2 = 1;
for (int j = 0; j < out_dims2.nbDims; j++) {
out_size2 *= out_dims2.d[j];
}
auto out_dims3 = engine->getBindingDimensions(engine->getBindingIndex("det_scores"));
out_size3 = 1;
for (int j = 0; j < out_dims3.nbDims; j++) {
out_size3 *= out_dims3.d[j];
}
auto out_dims4 = engine->getBindingDimensions(engine->getBindingIndex("det_classes"));
out_size4 = 1;
for (int j = 0; j < out_dims4.nbDims; j++) {
out_size4 *= out_dims4.d[j];
}
context = engine->createExecutionContext();
if (!context) {
cout << "create execution context failed\n";
std::abort();
}
cudaError_t state;
state = cudaMalloc(&buffs[0], in_size * sizeof(float));
if (state) {
cout << "allocate memory failed\n";
std::abort();
}
state = cudaMalloc(&buffs[1], out_size1 * sizeof(int));
if (state) {
cout << "allocate memory failed\n";
std::abort();
}
state = cudaMalloc(&buffs[2], out_size2 * sizeof(float));
if (state) {
cout << "allocate memory failed\n";
std::abort();
}
state = cudaMalloc(&buffs[3], out_size3 * sizeof(float));
if (state) {
cout << "allocate memory failed\n";
std::abort();
}
state = cudaMalloc(&buffs[4], out_size4 * sizeof(int));
if (state) {
cout << "allocate memory failed\n";
std::abort();
}
state = cudaStreamCreate(&stream);
if (state) {
cout << "create stream failed\n";
std::abort();
}
}
void Yolo::Infer(
int aWidth,
int aHeight,
int aChannel,
unsigned char* aBytes,
float* Boxes,
int* ClassIndexs,
int* BboxNum,
float* Scores) {
cv::Mat img(aHeight, aWidth, CV_MAKETYPE(CV_8U, aChannel), aBytes);
cv::Mat pr_img;
float scale = letterbox(img, pr_img, {iW, iH}, 32, {114, 114, 114}, true);
cv::cvtColor(pr_img, pr_img, cv::COLOR_BGR2RGB);
float* blob = blobFromImage(pr_img);
static int* num_dets = new int[out_size1];
static float* det_boxes = new float[out_size2];
static float* det_scores = new float[out_size3];
static int* det_classes = new int[out_size4];
cudaError_t state =
cudaMemcpyAsync(buffs[0], &blob[0], in_size * sizeof(float), cudaMemcpyHostToDevice, stream);
if (state) {
cout << "transmit to device failed\n";
std::abort();
}
context->enqueueV2(&buffs[0], stream, nullptr);
state =
cudaMemcpyAsync(num_dets, buffs[1], out_size1 * sizeof(int), cudaMemcpyDeviceToHost, stream);
if (state) {
cout << "transmit to host failed \n";
std::abort();
}
state = cudaMemcpyAsync(
det_boxes, buffs[2], out_size2 * sizeof(float), cudaMemcpyDeviceToHost, stream);
if (state) {
cout << "transmit to host failed \n";
std::abort();
}
state = cudaMemcpyAsync(
det_scores, buffs[3], out_size3 * sizeof(float), cudaMemcpyDeviceToHost, stream);
if (state) {
cout << "transmit to host failed \n";
std::abort();
}
state = cudaMemcpyAsync(
det_classes, buffs[4], out_size4 * sizeof(int), cudaMemcpyDeviceToHost, stream);
if (state) {
cout << "transmit to host failed \n";
std::abort();
}
BboxNum[0] = num_dets[0];
int img_w = img.cols;
int img_h = img.rows;
int x_offset = (iW * scale - img_w) / 2;
int y_offset = (iH * scale - img_h) / 2;
for (size_t i = 0; i < num_dets[0]; i++) {
float x0 = (det_boxes[i * 4]) * scale - x_offset;
float y0 = (det_boxes[i * 4 + 1]) * scale - y_offset;
float x1 = (det_boxes[i * 4 + 2]) * scale - x_offset;
float y1 = (det_boxes[i * 4 + 3]) * scale - y_offset;
x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
Boxes[i * 4] = x0;
Boxes[i * 4 + 1] = y0;
Boxes[i * 4 + 2] = x1 - x0;
Boxes[i * 4 + 3] = y1 - y0;
ClassIndexs[i] = det_classes[i];
Scores[i] = det_scores[i];
}
delete blob;
}
Yolo::~Yolo() {
cudaStreamSynchronize(stream);
cudaFree(buffs[0]);
cudaFree(buffs[1]);
cudaFree(buffs[2]);
cudaFree(buffs[3]);
cudaFree(buffs[4]);
cudaStreamDestroy(stream);
context->destroy();
engine->destroy();
runtime->destroy();
}
listenerMat.cpp
// 1.包含头文件;
#include "rclcpp/rclcpp.hpp"
#include "std_msgs/msg/string.hpp"
#include
#include
#include
#include "utils.h"
#include "kalmanboxtracker.h"
#include "sort.h"
#include
#include
#include
#include "std_msgs/msg/string.hpp"
using namespace std::chrono_literals;
using namespace std::chrono_literals;
using std::placeholders::_1;
//using std::placeholders::_1;
using std::placeholders::_2;
#include "yolo.h"
Yolo *myyolo;
sort *mot_tracker;
std::vector colors;
std::string msgstr = "";
cv::Mat detectResultMat = cv::Mat::zeros(1080,720,CV_8UC3);
void filter(float* Boxes,int* ClassIndexs,int* BboxNum,float* Scores,
float conf_thres, std::vector classes,float *newBoxes,
int *newClassIndexs,int *newBboxNum,float *newScores)
{
int count = 0;
for (int i =0;iconf_thres){
std::vector::iterator iter=std::find(classes.begin(),classes.end(),ClassIndexs[i]);
if ( iter!=classes.end())
{
//cout << "Not found" << endl;
for (int j=0;j<4;j++) {
newBoxes[count*4+j]=Boxes[i*4+j];
}
newClassIndexs[count]=ClassIndexs[i];
newScores[count]=Scores[i];
count++;
}
}
}
newBboxNum[0]=count;
}
// 3.定义节点类;
class MinimalSubscriber : public rclcpp::Node
{
public:
MinimalSubscriber(std::string name)
: Node(name)
{
srand(time(0));
for (size_t i = 0; i < 100; i++)
colors.push_back(cv::Vec3b(rand() % 255, rand() % 255, rand() % 255));
mot_tracker = new sort(5, 4, 0.25);
// 3-1.创建订阅方;
//subscription_ = this->create_subscription("pubImageTopic", 10, std::bind(&MinimalSubscriber::topic_callback, this, _1));
subscription_ = this->create_subscription("pubImageTopic", 10, std::bind(&MinimalSubscriber::topic_callback, this, _1));
// 3-1.创建发布方;
msgPublisher_ = this->create_publisher("detectResultMsgtopic", 10);
// 3-2.创建定时器;
msgTimer = this->create_wall_timer(50ms, std::bind(&MinimalSubscriber::msg_timer_callback, this));
//mat topic
matPublisher_ = this->create_publisher("detectResultMatTopic", 10);
matTimer = this->create_wall_timer(50ms, std::bind(&MinimalSubscriber::mat_timer_callback, this));
}
private:
// 3-2.处理订阅到的消息;
//rclcpp::Subscription subscription_;
rclcpp::Subscription::SharedPtr subscription_;
//void topic_callback(const sensor_msgs::msg::CompressedImage & msg) const
rclcpp::TimerBase::SharedPtr msgTimer;
rclcpp::Publisher::SharedPtr msgPublisher_;
//std_msgs::msg::String detectResultMessage;// = std_msgs::msg::String();
//detectResultMessage.data = "null";
rclcpp::TimerBase::SharedPtr matTimer;
rclcpp::Publisher::SharedPtr matPublisher_;
//sensor_msgs::msg::CompressedImage::SharedPtr detect_result_img_compressed_;// = cv_bridge::CvImage(std_msgs::msg::Header(), "bgr8", des1080).toCompressedImageMsg();
void msg_timer_callback(){
// 3-3.组织消息并发布。
auto detectResultMessage = std_msgs::msg::String();
detectResultMessage.data = msgstr;
RCLCPP_INFO(this->get_logger(), "发布的消息:'%s'", detectResultMessage.data.c_str());
msgPublisher_ ->publish(detectResultMessage);
}
void mat_timer_callback(){
sensor_msgs::msg::CompressedImage::SharedPtr detect_result_img_compressed_ = cv_bridge::CvImage(std_msgs::msg::Header(), "bgr8", detectResultMat).toCompressedImageMsg();
//RCLCPP_INFO(this->get_logger(), "发布的消息:检测图片");
this->matPublisher_ ->publish(*detect_result_img_compressed_);
}
void topic_callback(const sensor_msgs::msg::CompressedImage::ConstPtr msg) const
{
try
{
cv_bridge::CvImagePtr cv_ptr_compressed = cv_bridge::toCvCopy(msg,sensor_msgs::image_encodings::BGR8);
cv::Mat imgCallback = cv_ptr_compressed->image;
//cv::imshow("imgCallback",imgCallback);
//cv::waitKey(1);
cv::Mat des1080;
//cv::resize(imgCallback, des1080, cv::Size(1920, 1080), 0, 0, cv::INTER_NEAREST);
cv::resize(imgCallback, des1080, cv::Size(1080, 720), 0, 0, cv::INTER_NEAREST);
//std::cout<<"cv_ptr_compressed: "<image.cols<<" h: "<image.rows<Infer(des1080.cols, des1080.rows, des1080.channels(), des1080.data, Boxes, ClassIndexs, BboxNum,Scores);
//auto end = std::chrono::system_clock::now();
//std::cout<(end-start).count()<<"ms"<draw_objects(des1080, Boxes, ClassIndexs, BboxNum, Scores);
float newBoxes[400];
int newBboxNum[1];
int newClassIndexs[100];
float newScores[100];
float conf_thres = 0.4;
std::vector classes;
//classes.push_back(1);//识别车
classes.push_back(0);//识别人
filter(Boxes, ClassIndexs, BboxNum,Scores,conf_thres,classes,newBoxes,newClassIndexs,newBboxNum,newScores);
std::vector detections;
for (int i =0; i< newBboxNum[0]; i++){
cv::Rect rect(newBoxes[i * 4], newBoxes[i * 4 + 1], newBoxes[i * 4 + 2], newBoxes[i * 4 + 3]);
detections.push_back(rect);
}
std::vector> trackers = mot_tracker->update(detections);
//qDebug()<detectResultMessage.data = std::to_string(84);
//msgstr = "sddh15151515";
//std::string str
msgstr = sendstr;
}
else{
//msgstr = "null";
msgstr = sendstr;
}
cv::imshow("des1080",des1080);
cv::waitKey(1);
detectResultMat = des1080;
//auto end = std::chrono::system_clock::now();
//std::cout<(end-start).count()<<"ms"<(str.c_str());
myyolo = new Yolo(chr);
// 2.初始化 ROS2 客户端;
rclcpp::init(argc, argv);
// 4.调用spin函数,并传入节点对象指针。
auto node = std::make_shared("detect");
rclcpp::spin(node);
//rclcpp::spin(std::make_shared());
// 5.释放资源;
rclcpp::shutdown();
return 0;
}
package.xml
detect_topic
0.0.0
TODO: Package description
tuya
TODO: License declaration
ament_cmake
rclcpp
std_msgs
ament_lint_auto
ament_lint_common
ament_cmake
CMakeLists.txt
cmake_minimum_required(VERSION 3.8)
project(detect_topic)
add_definitions(-std=c++14)
# Default to C++14
#if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 14)
#endif()
if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic)
endif()
# find dependencies
find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(std_msgs REQUIRED)
find_package(cv_bridge REQUIRED)
find_package(image_transport)
find_package(sensor_msgs REQUIRED)
find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
include_directories(/usr/local/cuda/include)
link_directories(/usr/local/cuda/lib64)
# tensorrt
include_directories(/usr/include/aarch64-linux-gnu/)
link_directories(/usr/lib/aarch64-linux-gnu/)
# tensorrt
#include_directories(/home/tuya/TensorRT-8.6.1.6/targets/x86_64-linux-gnu/include/)
#link_directories(/home/tuya/TensorRT-8.6.1.6/targets/x86_64-linux-gnu/lib/)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14 -Wall -Ofast -Wfatal-errors -D_MWAITXINTRIN_H_INCLUDED")
add_executable(detect
src/listenerMat.cpp
src/yolo.h
src/yolo.cpp
src/hungarian.h
src/hungarian.cpp
src/kalmanboxtracker.h
src/kalmanboxtracker.cpp
src/sort.h
src/sort.cpp
src/utils.h
src/utils.cpp
)
find_package(OpenCV REQUIRED)
include_directories( ${OpenCV_INCLUDE_DIRS})
target_link_libraries(detect ${OpenCV_LIBS})
# ros
target_link_libraries(detect
${rclcpp_LIBRARIES}
)
target_link_libraries(detect nvinfer)
target_link_libraries(detect nvinfer_plugin)
target_link_libraries(detect cudart)
ament_target_dependencies(detect
rclcpp
std_msgs
sensor_msgs
cv_bridge
OpenCV
image_transport
)
# 安装可执行文件
install(TARGETS detect
DESTINATION lib/${PROJECT_NAME}
)
ament_package()
SORT代码
sort demo_涂鸦c的博客-CSDN博客