题面描述
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
亚历克斯不喜欢无聊。这就是为什么每当他感到无聊时,他就会想出一些游戏。在一个漫长的冬日傍晚,他想出了一个游戏并决定玩它。
Given a sequence a consisting of n integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak) and delete it, at that all elements equal to ak + 1 and ak - 1 also must be deleted from the sequence. That step brings ak points to the player.
给定一个由n个整数组成的序列。玩家可以做几个步骤。在单个步骤中,他可以选择序列的元素(假设为)并删除它,此时,所有等于的元素也必须从序列中删除。这个步骤给玩家带来点数。
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
亚历克斯是个完美主义者,所以他决定得到尽可能多的分数。帮助他。
输入格式
The first line contains integer n (1 ≤ n ≤ 105) that shows how many numbers are in Alex's sequence.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 105).
第一行包含一个整数n(),表示Alex序列中有多少个数字。
第二行包含n个整数
输出格式
输出一个整数——Alex可以获得的最大点数
样例
样例输入
9
1 2 1 3 2 2 2 2 3
样例输出
10
题解
先求出数列中每一个数字k的出现次数num[k]
考虑取任意一个数时只会影响到和,我们可以先设dp[i]表示选取num后可以取得的最大值。因为任意取两个数,若选取后可以选取,则选取后可以选取,因此我们只考虑之间的关系。这样我们就很容易得到递推式:
注意,最后一重for循环要从2循环至已知的maxn
#include
#define maxn 1000050
using namespace std;
inline char get(){
static char buf[3000],*p1=buf,*p2=buf;
return p1==p2 && (p2=(p1=buf)+fread(buf,1,3000,stdin),p1==p2)?EOF:*p1++;
}
inline long long read(){
register char c=getchar();register long long f=1,_=0;
while(c>'9' || c<'0')f=(c=='-')?-1:1,c=getchar();
while(c<='9' && c>='0')_=(_<<3)+(_<<1)+(c^48),c=getchar();
return _*f;
}
long long note,n,a[maxn],dp[maxn];
long long op=0;
int main(){
//freopen("1.txt","r",stdin);
n=read();
for(register long long i=1;i<=n;i++)a[i]=read(),dp[a[i]]+=a[i],note=max(note,a[i]);
for(register long long i=2;i<=note;i++)dp[i]=max(dp[(i)-1],dp[(i)-2]+dp[i]),op=max(dp[i],op);
cout<