分布式事务入门

文章目录

  • 分布式事务问题
    • 本地事务
    • 分布式事务
    • 演示分布式事务问题
  • 理论基础
    • CAP定理
      • 一致性
      • 可用性
      • 分区容错
      • 矛盾
    • BASE理论
  • Seata
    • Seata的架构
    • 部署TC服务
    • 微服务集成seata
  • 动手实践
    • XA模式
      • 两阶段提交
      • Seata的XA模型
      • 实现XA模式
    • AT模式
      • Seata的AT模型
      • 流程梳理
      • 脏写问题
      • 实现AT模式
    • TCC模式
      • 流程分析
      • TCC模式原理
      • 事务悬挂和空回滚
      • 实现TCC模式
    • SAGA模式
      • 原理
      • 四种模式对比
  • 高可用
    • 高可用架构模型
    • 实现高可用
      • 模拟异地容灾的TC集群
      • 将事务组映射配置到nacos
      • 微服务读取nacos配置

分布式事务问题

本地事务

本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:
分布式事务入门_第1张图片

分布式事务

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务
  • 跨服务的分布式事务
  • 综合情况

在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:

  • 创建新订单
  • 扣减商品库存
  • 从用户账户余额扣除金额

完成上面的操作需要访问三个不同的微服务和三个不同的数据库
分布式事务入门_第2张图片
订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。

但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务

此时ACID难以满足,这是分布式事务要解决的问题

演示分布式事务问题

我们通过一个案例来演示分布式事务的问题:

  • 创建数据库,名为seata_demo,然后导入课前资料提供的SQL文件:
    分布式事务入门_第3张图片

  • 导入课前资料提供的微服务:
    分布式事务入门_第4张图片
    微服务结构如下:
    分布式事务入门_第5张图片
    其中:
    seata-demo:父工程,负责管理项目依赖

    • account-service:账户服务,负责管理用户的资金账户。提供扣减余额的接口
    • storage-service:库存服务,负责管理商品库存。提供扣减库存的接口
    • order-service:订单服务,负责管理订单。创建订单时,需要调用account-service和storage-service
  • 启动nacos、所有微服务

  • 测试下单功能,发出Post请求:

    http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=2&money=200
    
  • 如图:
    分布式事务入门_第6张图片
    测试发现,当库存不足时,如果余额已经扣减,并不会回滚,出现了分布式事务问题

理论基础

解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导

CAP定理

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标:

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)

它们的第一个字母分别是 C、A、P
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理

分布式事务入门_第7张图片

一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致

比如现在包含两个节点,其中的初始数据是一致的:
分布式事务入门_第8张图片
当我们修改其中一个节点的数据时,两者的数据产生了差异:
分布式事务入门_第9张图片
要想保住一致性,就必须实现node01 到 node02的数据 同步:
分布式事务入门_第10张图片

可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝

如图,有三个节点的集群,访问任何一个都可以及时得到响应:
分布式事务入门_第11张图片
当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:
分布式事务入门_第12张图片

分区容错

Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区
Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务
分布式事务入门_第13张图片

矛盾

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免

当节点接收到新的数据变更时,就会出现问题了:
分布式事务入门_第14张图片
如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用

如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致

也就是说,在P一定会出现的情况下,A和C之间只能实现一个

BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

  • Basically Available(基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用
  • Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致
  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC)
分布式事务入门_第15张图片
这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务

Seata

Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案

官网地址:其中的文档、播客中提供了大量的使用说明、源码分析
分布式事务入门_第16张图片

Seata的架构

Seata事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚
  • TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务
  • RM (Resource Manager) - **资源管理器:**管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回
    分布式事务入门_第17张图片

Seata基于上述架构提供了四种不同的分布式事务解决方案:

  • XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
  • TCC模式:最终一致的分阶段事务模式,有业务侵入
  • AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
  • SAGA模式:长事务模式,有业务侵入

无论哪种方案,都离不开TC,也就是事务的协调者

部署TC服务

  • 首先我们要下载seata-server包

  • 解压
    分布式事务入门_第18张图片

  • 修改conf目录下的application.example.yml文件:
    分布式事务入门_第19张图片

  • 修改完application.example.yml后在修改application.yml文件,注意application.yml初始状态没有下图那么多配置,需要把application.example.yml中对应nacos配置复制到里面去
    分布式事务入门_第20张图片

  • 在nacos添加配置
    特别注意,为了让tc服务的集群可以共享配置,我们选择了nacos作为统一配置中心。因此服务端配置文件seataServer.properties文件需要在nacos中配好
    格式如下:
    分布式事务入门_第21张图片
    配置内容如下:

    # 数据存储方式,db代表数据库
    store.mode=db
    store.db.datasource=druid
    store.db.dbType=mysql
    store.db.driverClassName=com.mysql.jdbc.Driver
    store.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=true
    store.db.user=root
    store.db.password=123456
    store.db.minConn=5
    store.db.maxConn=30
    store.db.globalTable=global_table
    store.db.branchTable=branch_table
    store.db.queryLimit=100
    store.db.lockTable=lock_table
    store.db.maxWait=5000
    # 事务、日志等配置
    server.recovery.committingRetryPeriod=1000
    server.recovery.asynCommittingRetryPeriod=1000
    server.recovery.rollbackingRetryPeriod=1000
    server.recovery.timeoutRetryPeriod=1000
    server.maxCommitRetryTimeout=-1
    server.maxRollbackRetryTimeout=-1
    server.rollbackRetryTimeoutUnlockEnable=false
    server.undo.logSaveDays=7
    server.undo.logDeletePeriod=86400000
    
    # 客户端与服务端传输方式
    transport.serialization=seata
    transport.compressor=none
    # 关闭metrics功能,提高性能
    metrics.enabled=false
    metrics.registryType=compact
    metrics.exporterList=prometheus
    metrics.exporterPrometheusPort=9898
    

    其中的数据库地址、用户名、密码都需要修改成你自己的数据库信息

  • 创建数据库表

    CREATE DATABASE seata;
    USE seata;
    
    SET NAMES utf8mb4;
    SET FOREIGN_KEY_CHECKS = 0;
    
    -- ----------------------------
    -- 分支事务表
    -- ----------------------------
    DROP TABLE IF EXISTS `branch_table`;
    CREATE TABLE `branch_table`  (
      `branch_id` bigint(20) NOT NULL,
      `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
      `transaction_id` bigint(20) NULL DEFAULT NULL,
      `resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `status` tinyint(4) NULL DEFAULT NULL,
      `client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `gmt_create` datetime(6) NULL DEFAULT NULL,
      `gmt_modified` datetime(6) NULL DEFAULT NULL,
      PRIMARY KEY (`branch_id`) USING BTREE,
      INDEX `idx_xid`(`xid`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;
    
    -- ----------------------------
    -- 全局事务表
    -- ----------------------------
    DROP TABLE IF EXISTS `global_table`;
    CREATE TABLE `global_table`  (
      `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
      `transaction_id` bigint(20) NULL DEFAULT NULL,
      `status` tinyint(4) NOT NULL,
      `application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `timeout` int(11) NULL DEFAULT NULL,
      `begin_time` bigint(20) NULL DEFAULT NULL,
      `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
      `gmt_create` datetime NULL DEFAULT NULL,
      `gmt_modified` datetime NULL DEFAULT NULL,
      PRIMARY KEY (`xid`) USING BTREE,
      INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,
      INDEX `idx_transaction_id`(`transaction_id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;
    
    SET FOREIGN_KEY_CHECKS = 1;
    
  • 进入bin目录,运行其中的seata-server.bat即可:
    -分布式事务入门_第22张图片
    启动成功后,seata-server应该已经注册到nacos注册中心了

    • 打开浏览器,访问nacos地址:,然后进入服务列表页面,可以看到seata-tc-server的信息:
      分布式事务入门_第23张图片

微服务集成seata

  • 引入依赖

    <dependency>
        <groupId>com.alibaba.cloud</groupId>
        <artifactId>spring-cloud-starter-alibaba-seata</artifactId>
        <exclusions>
            <!--版本较低,1.3.0,因此排除-->
            <exclusion>
                <artifactId>seata-spring-boot-starter</artifactId>
                <groupId>io.seata</groupId>
            </exclusion>
        </exclusions>
    </dependency>
    <!--seata starter 采用1.4.2版本-->
    <dependency>
        <groupId>io.seata</groupId>
        <artifactId>seata-spring-boot-starter</artifactId>
        <version>${seata.version}</version>
    </dependency>
    
  • 需要修改application.yml文件,添加一些配置:

    seata:
      registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
        # 参考tc服务自己的registry.conf中的配置
        type: nacos
        nacos: # tc
          server-addr: 127.0.0.1:8848
          namespace: ""
          group: DEFAULT_GROUP
          application: seata-tc-server # tc服务在nacos中的服务名称
      tx-service-group: seata-demo # 事务组,根据这个获取tc服务的cluster名称
      service:
        vgroup-mapping: # 事务组与TC服务cluster的映射关系
          seata-demo: GZ
    

动手实践

XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持

两阶段提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交

一阶段:

  • 事务协调者通知每个事物参与者执行本地事务
  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作
    • 如果一阶段都成功,则通知所有事务参与者,提交事务
    • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

正常情况:
分布式事务入门_第24张图片
异常情况:
分布式事务入门_第25张图片

Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
分布式事务入门_第26张图片
RM一阶段的工作:

  • 注册分支事务到TC
  • 执行分支业务sql但不提交
  • 报告执行状态到TC

TC二阶段的工作:

  • TC检测各分支事务执行状态
    a.如果都成功,通知所有RM提交事务
    b.如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

实现XA模式

  • 修改application.yml文件(每个参与事务的微服务),开启XA模式:

    seata:
      data-source-proxy-mode: XA
    
  • 给发起全局事务的入口方法添加@GlobalTransactional注解:
    分布式事务入门_第27张图片

AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷

Seata的AT模型

基本流程图:
分布式事务入门_第28张图片
阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

流程梳理

我们用一个真实的业务来梳理下AT模式的原理

比如,现在又一个数据库表,记录用户余额:

id money
1 100

其中一个分支业务要执行的SQL为:

update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

  • 一阶段:

    • TM发起并注册全局事务到TC
    • TM调用分支事务
    • 分支事务准备执行业务SQL
    • RM拦截业务SQL,根据where条件查询原始数据,形成快照。
      {
          "id": 1, "money": 100
      }
      
    • RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90
    • RM报告本地事务状态给TC
  • 二阶段:

    • TM通知TC事务结束

    • TC检查分支事务状态

      • 如果都成功,则立即删除快照
      • 如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100

脏写问题

在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
分布式事务入门_第29张图片
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据
分布式事务入门_第30张图片

实现AT模式

AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log

  • 导入课前资料提供的Sql文件:seata-at.sql,其中lock_table导入到TC服务关联的数据库,undo_log表导入到微服务关联的数据库:
    分布式事务入门_第31张图片

  • 修改application.yml文件,将事务模式修改为AT模式即可:

    seata:
      data-source-proxy-mode: AT # 默认就是AT
    
  • 给发起全局事务的入口方法添加@GlobalTransactional注解:
    分布式事务入门_第32张图片

TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留;
  • Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
  • Cancel:预留资源释放,可以理解为try的反向操作

流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30

  • 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30
    初识余额:
    在这里插入图片描述
    余额充足,可以冻结:
    在这里插入图片描述
    此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务
  • 阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30
    确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
    在这里插入图片描述
    此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元
  • 阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30
    需要回滚,那么就要释放冻结金额,恢复可用金额:
    在这里插入图片描述

TCC模式原理

Seata中的TCC模型依然延续之前的事务架构,如图:
分布式事务入门_第33张图片

事务悬挂和空回滚

  • 空回滚: 当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚
    执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚
    分布式事务入门_第34张图片

  • 业务悬挂: 对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂
    执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

实现TCC模式

这里我们定义一张表:

USE `seata_demo`;

DROP TABLE IF EXISTS `account_freeze_tbl`;
CREATE TABLE `account_freeze_tbl`  (
  `xid` VARCHAR(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `user_id` VARCHAR(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `freeze_money` INT(11) UNSIGNED NULL DEFAULT 0,
  `state` INT(1) NULL DEFAULT NULL COMMENT '事务状态,0:try1:confirm,2:cancel',
  PRIMARY KEY (`xid`) USING BTREE
) ENGINE = INNODB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

其中:

  • xid:是全局事务id
  • freeze_money:用来记录用户冻结金额
  • state:用来记录事务状态

那此时,我们的业务开怎么做呢?

  • Try业务:
    • 记录冻结金额和事务状态到account_freeze表
    • 扣减account表可用金额
  • Confirm业务
    • 根据xid删除account_freeze表的冻结记录
  • Cancel业务
    • 修改account_freeze表,冻结金额为0,state为2
    • 修改account表,恢复可用金额
  • 如何判断是否空回滚?
    • cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
  • 如何避免业务悬挂?
    • try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务

接下来,我们改造account-service,利用TCC实现余额扣减功能

声明TCC接口
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,
我们在account-service项目中的cn.itcast.account.service包中新建一个接口,声明TCC三个接口:

@LocalTCC
public interface AccountTCCService {

    @TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
    void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
                @BusinessActionContextParameter(paramName = "money")int money);

    boolean confirm(BusinessActionContext ctx);

    boolean cancel(BusinessActionContext ctx);
}

创建相关实体类与mapper
分布式事务入门_第35张图片
编写实现类:在account-service服务中的cn.itcast.account.service.impl包下新建一个类,实现TCC业务:

@Slf4j
@Service
public class AccountTCCServiceImpl implements AccountTCCService {
    @Autowired
    private AccountMapper accountMapper;

    @Autowired
    private AccountFreezeMapper accountFreezeMapper;

    @Override
    @Transactional
    public void deduct(String userId, int money) {
        // 1.获取事务id
        String xid = RootContext.getXID();

        // 2.判断freeze中是否有冻结记录,如果有,一定是CANCEL执行过,我要拒绝
        AccountFreeze oldFreeze = accountFreezeMapper.selectById(xid);
        if (oldFreeze != null) {
            // CANCEL执行过,我要拒绝额业务
            return;
        }

        // 3.扣减可用余额
        accountMapper.deduct(userId, money);
        // 4.记录冻结金额,事务状态
        AccountFreeze freeze = new AccountFreeze();
        freeze.setUserId(userId);
        freeze.setFreezeMoney(money);
        freeze.setState(AccountFreeze.State.TRY);
        freeze.setXid(xid);
        accountFreezeMapper.insert(freeze);
    }

    @Override
    public boolean confirm(BusinessActionContext ctx) {
        // 1.获取事务Id
        String xid = ctx.getXid();
        // 2.根据Id删除记录
        int flag = accountFreezeMapper.deleteById(xid);
        return flag == 1;
    }

    @Override
    public boolean cancel(BusinessActionContext ctx) {

        // 1.查询冻结记录
        String xid = ctx.getXid();
        AccountFreeze freeze = accountFreezeMapper.selectById(xid);
        String userId = ctx.getActionContext("userId").toString();


        // 2.空回滚的判断,判断freeze是否为null,为null镇命歌try没执行,需要空回滚
        if (freeze == null) {
            // 证明try没有执行,需要空回滚
            freeze = new AccountFreeze();
            freeze.setUserId(userId);
            freeze.setFreezeMoney(0);
            freeze.setState(AccountFreeze.State.CANCEL);
            freeze.setXid(xid);
            accountFreezeMapper.insert(freeze);
            return true;
        }

        // 3.幂等判断
        if (freeze.getState() == AccountFreeze.State.CANCEL) {
            // 已经处理过一次CANCEL了,无需重复处理
            return true;
        }

        // 4.恢复可用余额
        accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());

        // 5.将动静金额清零,状态改为CANCEL
        freeze.setFreezeMoney(0);
        freeze.setState(AccountFreeze.State.CANCEL);
        int flag = accountFreezeMapper.updateById(freeze);

        return flag == 1;
    }
}

注入AccountTCCService
分布式事务入门_第36张图片

SAGA模式

Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。
其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。
Seata官网对于Saga的指南

原理

在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作
分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态

Saga也分为两个阶段:

  • 一阶段:直接提交本地事务
  • 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚
    分布式事务入门_第37张图片

四种模式对比

XA AT TCC SAGA
一致性 强一致 弱一致 弱一致 最终一致
隔离性 完全隔离 基于全局锁隔离 基于资源预留隔离 无隔离
代码侵入 要编写三个接口 要编写状态机和补偿业务
性能 非常好 非常好
场景 对一致性、隔离性有高要求的业务 基于关系型数据库的大多数分布式事务场景都可以 - 对性能要求较高的事务
-有非关系型数据库要参与的事务
- 业务流长、业务流程多
- 参与者包含其它公司或遗留系统服务,无法提供 TCC模式要求的三个接口

高可用

Seata的TC服务作为分布式事务核心,一定要保证集群的高可用性

高可用架构模型

搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可

但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾
比如一个TC集群在上海,另一个TC集群在杭州:
分布式事务入门_第38张图片

实现高可用

模拟异地容灾的TC集群

计划启动两台seata的tc服务节点:

节点名称 ip地址 端口号 集群名称
seata 127.0.0.1 8091 GZ
seata2 127.0.0.1 8092 TJ

之前我们已经启动了一台seata服务,端口是8091,集群名为GZ
现在,将seata目录复制一份,起名为seata2
修改conf目录下的application.example.yml文件并复制到application.yml文件
分布式事务入门_第39张图片
进入seata2/bin目录,然后运行命令:seata-server.bat -p 8092

打开nacos控制台,查看服务列表:
在这里插入图片描述
点进详情查看:
分布式事务入门_第40张图片

将事务组映射配置到nacos

接下来,我们需要将tx-service-group与cluster的映射关系都配置到nacos配置中心

  • 新建一个配置:
    分布式事务入门_第41张图片
    配置内容如下:

    # 事务组映射关系
    service.vgroupMapping.seata-demo=GZ
    
    service.enableDegrade=false
    service.disableGlobalTransaction=false
    # 与TC服务的通信配置
    transport.type=TCP
    transport.server=NIO
    transport.heartbeat=true
    transport.enableClientBatchSendRequest=false
    transport.threadFactory.bossThreadPrefix=NettyBoss
    transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
    transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
    transport.threadFactory.shareBossWorker=false
    transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
    transport.threadFactory.clientSelectorThreadSize=1
    transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
    transport.threadFactory.bossThreadSize=1
    transport.threadFactory.workerThreadSize=default
    transport.shutdown.wait=3
    # RM配置
    client.rm.asyncCommitBufferLimit=10000
    client.rm.lock.retryInterval=10
    client.rm.lock.retryTimes=30
    client.rm.lock.retryPolicyBranchRollbackOnConflict=true
    client.rm.reportRetryCount=5
    client.rm.tableMetaCheckEnable=false
    client.rm.tableMetaCheckerInterval=60000
    client.rm.sqlParserType=druid
    client.rm.reportSuccessEnable=false
    client.rm.sagaBranchRegisterEnable=false
    # TM配置
    client.tm.commitRetryCount=5
    client.tm.rollbackRetryCount=5
    client.tm.defaultGlobalTransactionTimeout=60000
    client.tm.degradeCheck=false
    client.tm.degradeCheckAllowTimes=10
    client.tm.degradeCheckPeriod=2000
    
    # undo日志配置
    client.undo.dataValidation=true
    client.undo.logSerialization=jackson
    client.undo.onlyCareUpdateColumns=true
    client.undo.logTable=undo_log
    client.undo.compress.enable=true
    client.undo.compress.type=zip
    client.undo.compress.threshold=64k
    client.log.exceptionRate=100
    

微服务读取nacos配置

接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:

seata:
  config:
    type: nacos
    nacos:
      server-addr: 127.0.0.1:8848
      username: nacos
      password: nacos
      group: SEATA_GROUP
      data-id: client.properties

重启微服务,现在微服务到底是连接tc的GZ集群,还是tc的TJ集群,都统一由nacos的client.properties来决定了

你可能感兴趣的:(Java笔记,java,分布式事务)