优化 | 谈谈运筹学在工业界应用的心得体会

作者:运筹OR帷幄

编者按

科普推广运筹学一直以来是【运筹OR帷幄】平台的初衷。本次我们邀请到了平台优化板块的责编团队的成员,结合各自独特的业界工作体会,分享他们眼中在业界发光发热的运筹学。

一、元器件行业中的运筹学

本人在一家做元器件服务的公司实习,军用元器件使用的时候有两个典型场景:替代和统型。

替代是设计师针对进口元器件找到可替代的国产型号;统型是在一个产品的BOM内确定某几个不同元器件是否可以统一使用一种,以此减少元器件品种数。

目前行业内开始从依赖专家经验(比如知道某个国产元器件就是对标某个进口元器件做的),转向从元器件性能参数的相似度出发进行判断,所以涉及到相似度和聚类方法的应用。

相比方法本身,解决问题的更大阻碍是元器件性能参数数据的复杂性和不规范性。例如不同类别的元器件性能参数不同,即使在同一类别下,不同生厂商给出的性能参数形式也不同,对此进行规范需要有元器件专业知识,所以实际中,数据清洗往往耗费最多人力,也是影响方法使用效果的一大因素。

二、电力行业中的运筹学

本人领域是电力系统最优化,可能大家没有察觉,但是现在中国的电力网络毫无争议的走在了世界的最前沿。强如美国,最近也又一次出现了大规模停电问题。(上次是1977年加州大停电)这次美国的停电持续了25个小时,约至少4万人受到了影响,经济损失至少3000万美金以上。但是中国自从普及用电后,从没发生过如此大规模的停电问题。除了电力人的辛勤奋斗外,这也离不开运筹学在电力系统中的应用。

众所周知,我们现在的电力网是交流输电网络。交流输电网络中的参数远比直流输电网络要复杂得多。最明显的不同,在交流网络中我们需要处理线路的有功功率无功功率。除此之外,线路的损耗、输电节点的电压和相角也是我们需要考虑的因素。为了保证整个电力系统的损耗最小,我们需要建立相关的数学模型进行分析计算,然后再由调度中心进行调控。但是实际问题的复杂程度远远超乎想象,单一个最优潮流问题就是一个大规模非凸非线性的问题。为了求解这类问题,相关学者提出了诸多算法和理论。诸如:半正定规划、现代内点法、凸松弛技术,模型近似技术等。这些理论已经发展了数十年,但即便如此,也没有一套成熟的理论被应用到实际中。

在电力网中,我们不单要考虑线路损耗的降低,更重要的是要保证供电的可靠性。我们常常需要提前一天或数天对电力系统进行调度安排,这类问题往往是一个多层优化问题,对于这类问题,我们常见的求解办法是Benders分解和列生成。除此之外,我们需要不定期对线路检修,发电厂的维护,而线路的通断、发电厂的启停在数学模型中又成了一个整数规划问题。整体的求解难度又上升了一个层次。另外,在国家大规模倡导新能源接入的今天,风电和光伏电站不断被接入电力网络中,而新能源不能得到普及的一个重要因素是我们不能准确预知新能源电厂在下一时刻能够发出多少电能供我们使用。为了分析这类问题,我们的模型在混合整数非线性规划上又需要考虑不确定因素带来的影响。对这类问题的求解,我们又提出了随机规划、鲁棒优化、分布鲁棒等。还有一点,我们的输电线路可能会由于雷击、树枝接触等导致出现输送功率出现扰动。系统中的这些小扰动可能会对用户供电的电压和频率产生波动,对于普通家庭来说可能影响不大,但是对于一些

你可能感兴趣的:(优化,人工智能,算法,机器学习)