import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
import torchvision.models as models
# 定义数据预处理和加载
transform = transforms.Compose([transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2)
# 定义ResNet-18模型
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.resnet = models.resnet18(pretrained=False)
self.resnet.fc = nn.Linear(512, 10) # 更改输出层为10个类别
def forward(self, x):
return self.resnet(x)
# 初始化模型、损失函数和优化器
net = ResNet18()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# 训练模型
def train(net, trainloader, criterion, optimizer, epochs=10):
net.train()
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # 每100个小批次打印一次损失
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# 训练模型
train(net, trainloader, criterion, optimizer, epochs=10)
# 保存模型权重
torch.save(net.state_dict(), 'resnet18_cifar10.pth')
# 测试模型
def test(net, testloader):
net.eval()
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
inputs, labels = data
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Accuracy on test set: {:.2f}%'.format(accuracy))
# 加载保存的模型权重并测试模型
net = ResNet18()
net.load_state_dict(torch.load('resnet18_cifar10.pth'))
test(net, testloader)